Strange IndiaStrange India


  • Verleden, S. E. et al. Small airways pathology in idiopathic pulmonary fibrosis: a retrospective cohort study. Lancet Respir. Med. 8, 573–584 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hogg, J. C., Macklem, P. T. & Thurlbeck, W. M. The resistance of small airways in normal and diseased human lungs. Aspen Emphysema Conf. https://europepmc.org/article/med/5610792 10, 433–441 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • Tanabe, N. et al. Micro-computed tomography comparison of preterminal bronchioles in centrilobular and panlobular emphysema. Am. J. Respir. Crit. Care Med. 195, 630–638 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weibel, E. R. & Gomez, D. M. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 137, 577–585 (1962).

    CAS 
    PubMed 

    Google Scholar 

  • Kobayashi, Y. et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22, 934–946 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strunz, M. et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 11, 3559 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, J. et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27, 366–382 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carraro, G. et al. Single-cell reconstruction of human basal cell diversity in normal and idiopathic pulmonary fibrosis lungs. Am. J. Respir. Crit. Care Med. 202, 1540–1550 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okuda, K. et al. Secretory cells dominate airway CFTR expression and function in human airway superficial epithelia. Am. J. Respir. Crit. Care Med. 203, 1275–1289 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Hogg, J. C., Macklem, P. T. & Thurlbeck, W. M. Site and nature of airway obstruction in chronic obstructive lung disease. N. Engl. J. Med. 278, 1355–1360 (1968).

    CAS 
    PubMed 

    Google Scholar 

  • Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Cosio, M. et al. The relations between structural changes in small airways and pulmonary-function tests. N. Engl. J. Med. 298, 1277–1281 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Weibel, E. R. A retrospective of lung morphometry: from 1963 to present. Am. J. Physiol. Lung Cell. Mol. Physiol. 305, L405–L408 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Deprez, M. et al. A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med. 202, 1636–1645 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Schittny, J. C. Development of the lung. Cell Tissue Res. 367, 427–444 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, H., Deutsch, G. H. & Wert, S. E. Comprehensive anatomic ontologies for lung development: a comparison of alveolar formation and maturation within mouse and human lung. J. Biomed. Semant. 10, 18 (2019).

    Google Scholar 

  • Jeffrey, P. K. The development of large and small airways. Am. J. Respir. Crit. Care Med. 157, S174–S180 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Miller, A. J. et al. In vitro and in vivo development of the human airway at single-cell resolution. Dev. Cell 53, 117–128 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, S., MacLean, A. L., Peng, T. & Nie, Q. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 34, 2077–2086 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, P., Wang, S., Li, T. & Nie, Q. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics. Nat. Commun. 12, 5609 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katsura, H. et al. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell 27, 890–904 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plantier, L. et al. Ectopic respiratory epithelial cell differentiation in bronchiolised distal airspaces in idiopathic pulmonary fibrosis. Thorax 66, 651–657 (2011).

    PubMed 

    Google Scholar 

  • Weibel, E. R. Morphometry of the Human Lung (Springer-Verlag, 1963).

  • Castleman, W. L., Dungworth, D. L. & Tyler, W. S. Intrapulmonary airway morphology in three species of monkeys: a correlated scanning and transmission electron microscopic study. Am. J. Anat. 142, 107–121 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Pinkerton, K. E. & Joad, J. P. The mammalian respiratory system and critical windows of exposure for children’s health. Environ. Health Perspect. 108, 457–462 (2000). Suppl 3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyde, D. M., Samuelson, D. A., Blakeney, W. H. & Kosch, P. C. A correlative light microscopy, transmission and scanning electron microscopy study of the ferret lung. Scan. Electron Microsc. 3, 891–898 (1979).

    Google Scholar 

  • Miller, L. A., Royer, C. M., Pinkerton, K. E. & Schelegle, E. S. Nonhuman primate models of respiratory disease: past, present, and future. ILAR J. 58, 269–280 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Rogers, C. S. et al. The porcine lung as a potential model for cystic fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L240–L263 (2008).

  • Plopper, C. G., Heidsiek, J. G., Weir, A. J., George, J. A. & Hyde, D. M. Tracheobronchial epithelium in the adult rhesus monkey: a quantitative histochemical and ultrastructural study. Am. J. Anat. 184, 31–40 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, S. et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res. 31, 415–432 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Boucher, R. C. Muco-obstructive lung diseases. N. Engl. J. Med. 380, 1941–1953 (2019).

    CAS 

    Google Scholar 

  • Bhandari, A. & McGrath-Morrow, S. Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia. Semin. Perinatol. 37, 132–137 (2013).

    PubMed 

    Google Scholar 

  • Jiang, Y. et al. Alteration of cystic airway mesenchyme in congenital pulmonary airway malformation. Sci. Rep. 9, 5296 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, C. F. B. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Giangreco, A., Reynolds, S. D. & Stripp, B. R. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am. J. Pathol. 161, 173–182 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, S. E., Beronja, S., Pasolli, H. A. & Fuchs, E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470, 353–358 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, P. A. et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147, 525–538 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagendran, M., Riordan, D. P., Harbury, P. B. & Desai, T. J. Automated cell-type classification in intact tissues by single-cell molecular profiling. eLife 7, e30510 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwapiszewska, G. et al. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur. Respir. J. 52, 800564 (2018).

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *