Strange India All Strange Things About India and world


  • 1.

    Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Alsdorf, D., Rodriguez, E. & Lettenmaier, D. P. Measuring surface water from space. Rev. Geophys. 45, RG2002 (2007).

    ADS 

    Google Scholar 

  • 4.

    Mekonnen, M. M. & Hoekstra, A. Y. Sustainability: four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–215 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Smith, L. C. Rivers of Power: How a Natural Force Raised Kingdoms, Destroyed Civilizations, and Shapes our World. (Little, Brown, Spark, 2020).

  • 7.

    Zhao, G. & Gao, H. Estimating reservoir evaporation losses for the United States: fusing remote sensing and modeling approaches. Remote Sens. Environ. 226, 109–124 (2019).

    ADS 

    Google Scholar 

  • 8.

    Deemer, B. R. et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66, 949–964 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Cushman, R. M. Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. N. Am. J. Fish. Manage. 5, 330–339 (1985).

    Google Scholar 

  • 10.

    Pelicice, F. M., Pompeu, P. S. & Agostinho, A. A. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish. 16, 697–715 (2015).

    Google Scholar 

  • 11.

    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshw. Biol. 60, 410–425 (2015).

    Google Scholar 

  • 12.

    Wang, J., Sheng, Y., Gleason, C. J. & Wada, Y. Downstream Yangtze River levels impacted by Three Gorges Dam. Environ. Res. Lett. 8, 044012 (2013).

    ADS 

    Google Scholar 

  • 13.

    Kondolf, G. M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

    ADS 

    Google Scholar 

  • 14.

    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Shiklomanov, A. I., Lammers, R. B. & Vorosmarty, C. J. Widespread decline in hydrological monitoring threatens pan-Arctic research. Eos 83, 13–17 (2002).

    ADS 

    Google Scholar 

  • 16.

    Lawford, R., Strauch, A., Toll, D., Fekete, B. & Cripe, D. Earth observations for global water security. Curr. Opin. Environ. Sustain. 5, 633–643 (2013).

    Google Scholar 

  • 17.

    Gao, H., Birkett, C. & Lettenmaier, D. P. Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. 48, W09504 (2012).

    ADS 

    Google Scholar 

  • 18.

    Gao, H. Satellite remote sensing of large lakes and reservoirs: from elevation and area to storage. Wiley Interdiscip. Rev. Water 2, 147–157 (2015).

    Google Scholar 

  • 19.

    Zhou, T., Nijssen, B., Gao, H. & Lettenmaier, D. P. The contribution of reservoirs to global land surface water storage variations. J. Hydrometeorol. 17, 309–325 (2016).

    ADS 

    Google Scholar 

  • 20.

    Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T. & Beaudoing, H. K. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018); correction 565, E7 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Getirana, A., Kumar, S., Girotto, M. & Rodell, M. Rivers and floodplains as key component of global terrestrial water storage variability. Geophys. Res. Lett. 44, 10359–10368 (2017).

    ADS 

    Google Scholar 

  • 22.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • 23.

    Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    ADS 

    Google Scholar 

  • 25.

    Smith, L. C., Sheng, Y. & MacDonald, G. M. A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on Northern Hemisphere lake distribution. Permafr. Periglac. Process. 18, 201–208 (2007).

    Google Scholar 

  • 26.

    Ryan, J. C., Smith, L. C., Cooley, S. W., Pitcher, L. H. & Pavelsky, T. M. Global characterization of inland water reservoirs using ICESat‐2 altimetry and climate reanalysis. Geophys. Res. Lett. 47, 1–10 (2020).

    Google Scholar 

  • 27.

    Markus, T. et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens. Environ. 190, 260–273 (2017).

    ADS 

    Google Scholar 

  • 28.

    Biancamaria, S., Lettenmaier, D. P. & Pavelsky, T. M. The SWOT mission and its capabilities for land hydrology. Surv. Geophys. 37, 307–337 (2016).

    ADS 

    Google Scholar 

  • 29.

    Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019); correction 577, E9 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Syvitski, J. P. M., Vorosmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    ADS 

    Google Scholar 

  • 37.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019); correction 572, E9 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Neumann, T. A. et al. The Ice, Cloud, and Land Elevation Satellite – 2 mission: a global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 233, 111325 (2019).

    ADS 

    Google Scholar 

  • 39.

    Neuenschwander, A. L. et al. ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 3 (NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 20 October 2020); https://nsidc.org/data/ATL08/versions/3

  • 40.

    Neuenschwander, A. & Pitts, K. The ATL08 land and vegetation product for the ICESat-2 mission. Remote Sens. Environ. 221, 247–259 (2019).

    ADS 

    Google Scholar 

  • 41.

    Neuenschwander, A. L. & Pitts, K. Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation Along-Track Products (ATL08) Release 002 https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL08_ATBD_r002_v2.pdf (2019).

  • 42.

    Yamazaki, D. et al. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).

    ADS 

    Google Scholar 

  • 43.

    Birkett, C. M. et al. G-REALM: A lake/reservoir monitoring tool for water resources and regional security assessment. In American Geophysical Union Fall Meeting https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/374138 (2018).

  • 44.

    Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Processes 27, 2171–2186 (2013).

    ADS 

    Google Scholar 

  • 45.

    Global Runoff Data Center. Major River Basins of the World (Federal Institute of Hydrology, accessed 15 May 2020); https://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/221_MRB/riverbasins_node.html

  • 46.

    Parrish, C. E. et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. 11, 1634 (2019).

    ADS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *