Strange IndiaStrange India


  • Zila, V. et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 184, 1032–1046 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, H. B. & Görlich, D. Transport selectivity of nuclear pores, phase separation and membraneless organelles. Trends Biochem. Sci. 41, 46–61 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hülsmann, B. B., Labokha, A. A. & Görlich, D. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150, 738–751 (2012).

    PubMed 

    Google Scholar 

  • Knockenhauer, K. E. & Schwartz, T. U. The nuclear pore complex as a flexible and dynamic gate. Cell 164, 1162–1171 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hampoelz, B. Andres-Pons, A., Kastritis, P. & Beck, M. Structure and assembly of the nuclear pore complex. Annu. Rev. Biophys. 48, 515–536 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ribbeck, K. & Görlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    PubMed 

    Google Scholar 

  • Matsuura, Y. Mechanistic insights from structural analyses of Ran-GTPase-driven nuclear export of proteins and RNAs. J. Mol. Biol. 428, 2025–2039 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Christie, M. et al. Structural biology and regulation of protein import into the nucleus. J. Mol. Biol. 428, 2060–2090 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Baumhardt, J. & Chook, Y. M. in Nuclear–Cytoplasmic Transport. Nucleic Acids and Molecular Biology Vol. 33 (ed. Yang, W.) 113–149 (Springer, 2018).

  • Hurt, E. C. A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J. 7, 4323–4334 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wente, S. R., Rout, M. P. & Blobel, G. A new family of yeast nuclear pore complex proteins. J. Cell Biol. 119, 705–723 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Bayliss, R. et al. Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J. Mol. Biol. 293, 579–593 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Kehlenbach, R. H., Neumann, P., Ficner, R. & Dickmanns, A. Interaction of nucleoporins with nuclear transport receptors: a structural perspective. Biol. Chem. 404, 791–805 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–418 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rout, M. P. et al. The yeast nuclear pore complex. J. Cell Biol. 148, 635–652 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, H. B. & Görlich, D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 4, e04251 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemke, E. A. The multiple faces of disordered nucleoporins. J. Mol. Biol. 428, 2011–2024 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powers, M. A., Forbes, D. J., Dahlberg, J. E. & Lund, E. The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J. Cell Biol. 136, 241–250 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ori, A. et al. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, S. C. et al. Barrier properties of Nup98 FG phases ruled by FG motif identity and inter-FG spacer length. Nat. Commun. 14, 747 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frey, S. et al. Surface properties determining passage rates of proteins through nuclear pores. Cell 174, 202–217 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zila, V., Müller, T. G., Müller, B. & Kräusslich, H. G. HIV-1 capsid is the key orchestrator of early viral replication. PLoS Pathog. 17, e1010109 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ganser-Pornillos, B. K., Yeager, M. & Sundquist, W. I. The structural biology of HIV assembly. Curr. Opin. Struct. Biol. 18, 203–217 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sundquist, W. I. & Kräusslich, H. G. HIV-1 assembly, budding and maturation. Cold Spring Harb. Perspect. Med. 2, a006924 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Panté, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13, 425–434 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • von Appen, A. et al. In situ structural analysis of the human nuclear pore complex. Nature 526, 140–143 (2015).

    ADS 

    Google Scholar 

  • Burdick, R. C. et al. HIV-1 uncoats in the nucleus near sites of integration. Proc. Natl Acad. Sci. USA 117, 5486–5493 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C., Burdick, R. C., Nagashima, K., Hu, W. S. & Pathak, V. K. HIV-1 cores retain their integrity until minutes before uncoating in the nucleus. Proc. Natl Acad. Sci. USA 118, e2019467118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mosalaganti, S. et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 376, eabm9506 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Schuller, A. P. et al. The cellular environment shapes the nuclear pore complex architecture. Nature 598, 667–671 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, A. J. et al. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog. 8, e1002896 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matreyek, K. A., Yücel, S. S., Li, X. & Engelman, A. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog. 9, e1003693 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhattacharya, A. et al. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc. Natl Acad. Sci. USA 111, 18625–18630 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, A. J. et al. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS Pathog. 10, e1004459 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Buffone, C. et al. Nup153 unlocks the nuclear pore complex for HIV-1 nuclear translocation in nondividing cells. J. Virol. 92, e00648–18 (2018).

  • Wei, G. et al. Prion-like low complexity regions enable avid virus–host interactions during HIV-1 infection. Nat. Commun. 13, 5879 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Nunzio, F. et al. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 440, 8–18 (2013).

    PubMed 

    Google Scholar 

  • Xue, G. et al. The HIV-1 capsid core is an opportunistic nuclear import receptor. Nat. Commun. 14, 3782 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kane, M. et al. Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. eLife 7, e35738 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lau, D. et al. Self-assembly of fluorescent HIV capsid spheres for detection of capsid binders. Langmuir 36, 3624–3632 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Adam, S. A. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111, 807–816 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Solà Colom, M. et al. Nucleoporin-binding nanobodies that either track or inhibit nuclear pore complex assembly. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.557426 (2023).

  • Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pornillos, O., Ganser-Pornillos, B. K., Banumathi, S., Hua, Y. & Yeager, M. Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J. Mol. Biol. 401, 985–995 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, S. C., Güttler, T. & Görlich, D. Recapitulation of selective nuclear import and export with a perfectly repeated 12mer GLFG peptide. Nat. Commun. 12, 4047 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonner, W. M. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, allow entry to small proteins and exclude large proteins. J. Cell Biol. 64, 421–430 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Labokha, A. A. et al. Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J. 32, 204–218 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Schuh, M. & Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Fischer, D. K. et al. CA mutation N57A has distinct strain-specific HIV-1 capsid uncoating and infectivity phenotypes. J. Virol. 93, e00214–e00219 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. T = 4 icosahedral HIV-1 capsid as an immunogenic vector for HIV-1 V3 loop epitope display. Viruses 10, 667 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schirra, R. T. et al. A molecular switch modulates assembly and host factor binding of the HIV-1 capsid. Nat. Struct. Mol. Biol. 30, 383–390 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dick, R. A. et al. Inositol phosphates are assembly co-factors for HIV-1. Nature 560, 509–512 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isgro, T. A. & Schulten, K. Binding dynamics of isolated nucleoporin repeat regions to importin-β. Structure 13, 1869–1879 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Port, S. A. et al. Structural and functional characterization of CRM1–Nup214 interactions reveals multiple FG-binding sites involved in nuclear export. Cell Rep. 13, 690–702 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bejarano, D. A. et al. HIV-1 nuclear import in macrophages is regulated by CPSF6–capsid interactions at the nuclear pore complex. eLife 8, e41800 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sowd, G. A. et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc. Natl Acad. Sci. USA 113, E1054–E1063 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Achuthan, V. et al. Capsid–CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration. Cell Host Microbe 24, 392–404 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, E. M. & Hope, T. J. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol. 13, 471–483 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Güttler, T. et al. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat. Struct. Mol. Biol. 17, 1367–1376 (2010).

    PubMed 

    Google Scholar 

  • Frey, S. & Görlich, D. A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. J. Chromatogr. A 1337, 95–105 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Andersen, K. R., Leksa, N. C. & Schwartz, T. U. Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification. Proteins 81, 1857–1861 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *