Strange India All Strange Things About India and world


  • Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, K. et al. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, R.-Z., Gucci, F., Zhu, H., Chen, K. & Reece, M. J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stolze, K., Tao, J., von Rohr, F. O., Kong, T. & Cava, R. J. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem. Mater. 30, 906–914 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, T. X., Liao, Y., Lin, C., Su, Y. & Ting, J. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 31, 2101632 (2021).

    Article 
    CAS 

    Google Scholar 

  • Roychowdhury, S., Ghosh, T., Arora, R., Waghmare, U. V. & Biswas, K. Stabilizing n‐type cubic GeSe by entropy‐driven alloying of AgBiSe2: ultralow thermal conductivity and promising thermoelectric performance. Angew. Chem. Int. Ed. Engl. 130, 15387–15391 (2018).

    Article 

    Google Scholar 

  • Deng, Z. et al. Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping. Chem. Mater. 32, 6070–6077 (2020).

    Article 
    CAS 

    Google Scholar 

  • Luo, Y. et al. High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering. J. Am. Chem. Soc. 142, 15187–15198 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Z., Bei, H., Pharr, G. M. & George, E. P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014).

    Article 
    CAS 

    Google Scholar 

  • Rost, C. M., Rak, Z., Brenner, D. W. & Maria, J. Local structure of the MgxNixCoxCuxZnxO (x=0.2) entropy‐stabilized oxide: an EXAFS study. J. Am. Ceram. Soc. 100, 2732–2738 (2017).

    Article 
    CAS 

    Google Scholar 

  • Jiang, S. et al. A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gao, M. et al. The making of a reconfigurable semiconductor with a soft ionic lattice. Matter 4, 3874–3896 (2021).

    Article 
    ADS 

    Google Scholar 

  • Lai, M. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl Acad. Sci. USA 115, 11929–11934 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folgueras, M. C. et al. Ligand-free processable perovskite semiconductor ink. Nano Lett. 21, 8856–8862 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Folgueras, M. C. et al. Lattice dynamics and optoelectronic properties of vacancy-ordered double perovskite Cs2TeX6 (X=Cl, Br, I) single crystals. J. Phys. Chem. C 125, 25126–25139 (2021).

    Article 
    CAS 

    Google Scholar 

  • Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barfüßer, A. et al. Confined excitons in spherical-like halide perovskite quantum dots. Nano Lett. 22, 8810–8817 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Baimuratov, A. S. & Högele, A. Valley-selective energy transfer between quantum dots in atomically thin semiconductors. Sci. Rep. 10, 16971 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovalev, D. et al. Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules. Phys. Rev. Lett. 89, 137401 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yeh, J.-W., Chen, Y.-L., Lin, S.-J. & Chen, S.-K. High-entropy alloys – a new era of exploitation. Mater. Sci. Forum 560, 1–9 (2007).

    Article 
    CAS 

    Google Scholar 

  • Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gali, A. & George, E. P. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013).

    Article 
    CAS 

    Google Scholar 

  • Anand Sekhar, R., Samal, S., Nayan, N. & Bakshi, S. R. Microstructure and mechanical properties of Ti-Al-Ni-Co-Fe based high entropy alloys prepared by powder metallurgy route. J. Alloys Compd. 787, 123–132 (2019).

    Article 
    CAS 

    Google Scholar 

  • Solari, S. F. et al. Stabilization of lead-reduced metal halide perovskite nanocrystals by high-entropy alloying. J. Am. Chem. Soc. 144, 5864–5870 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karim, M. M. S. et al. Anion distribution, structural distortion, and symmetry-driven optical band gap bowing in mixed halide Cs2SnX6 vacancy ordered double perovskites. Chem. Mater. 31, 9430–9444 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hendrickson, W. A., Smith, J. L. & Sheriff, S. Direct phase determination based on anomalous scattering. Methods Enzymol. 115, 41–55 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, G. & Pettifer, R. F. CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J. Appl. Crystallogr. 34, 82–86 (2001).

    Article 
    CAS 

    Google Scholar 

  • Luo, H., Li, Z. & Raabe, D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, Y. et al. Multi-dopant engineering in perovskite Cs2SnCl6: white light emitter and spatially luminescent heterostructure. Inorg. Chem. 60, 17357–17363 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abfalterer, A. et al. Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals. ACS Mater. Lett. 2, 1644–1652 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saeki, K., Fujimoto, Y., Koshimizu, M., Yanagida, T. & Asai, K. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6. Appl. Phys. Express 9, 042602 (2016).

    Article 
    ADS 

    Google Scholar 

  • Wu, R., Liu, Y., Hu, S., Fu, P. & Xiao, Z. Red‐emitting perovskite variant Cs2PtCl6 phosphor: material design, luminous mechanism, and application in high‐color‐rendering white light‐emitting diodes. Adv. Opt. Mater. 10, 2201081 (2022).

    Article 
    CAS 

    Google Scholar 

  • McCall, K. M., Morad, V., Benin, B. M. & Kovalenko, M. V. Efficient lone-pair-driven luminescence: structure–property relationships in emissive 5s2 metal halides. ACS Mater. Lett. 2, 1218–1232 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, T. et al. Efficient energy transfer in Te4+-doped Cs2ZrCl6 vacancy-ordered perovskites and ultrahigh moisture stability via A-site Rb-alloying strategy. J. Phys. Chem. Lett. 12, 1829–1837 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacManus, J. P., Hogue, C. W., Marsden, B. J., Sikorska, M. & Szabo, A. G. Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors. J. Biol. Chem. 265, 10358–10366 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yun, C. S. et al. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc. 127, 3115–3119 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeltmann, A. H., Matwiyoff, N. A. & Morgan, L. O. Nuclear magnetic resonance of oxygen-17 and chlorine-35 in aqueous hydrochloric acid solutions of cobalt(II). I. Line shifts and relative abundances of solution species. J. Phys. Chem. 72, 121–127 (1968).

    Article 
    CAS 

    Google Scholar 

  • Brady, G. W., Robin, M. B. & Varimbi, J. The structure of ferric chloride in neutral and acid solutions. Inorg. Chem. 3, 1168–1173 (1964).

    Article 
    CAS 

    Google Scholar 

  • Tan, Z. et al. Lead‐free perovskite variant solid solutions Cs2Sn1–xTexCl6: bright luminescence and high anti‐water stability. Adv. Mater. 32, 2002443 (2020).

    Article 
    CAS 

    Google Scholar 

  • CrysAlisPro v.1.171.42.90a (Rigaku Corporation, 2022).

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article 
    CAS 

    Google Scholar 

  • Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • SAINT v.8.38A (Bruker AXS, Inc., 2012).

  • APEX3 v.2017.3-0 (Bruker AXS, Inc., 2012).

  • SADABS (Bruker AXS, Inc., 2017).

  • Gaussian v.16, Revision C.01, Frisch, M. J. et al. (Gaussian, Inc., 2016).

  • Gamelin, D. R. & Güdel, H. U. Spectroscopy and dynamics of Re4+ near-IR-to-visible luminescence upconversion. Inorg. Chem. 38, 5154–5164 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khan, S. M., Patterson, H. H. & Engstrom, H. Multiple state luminescence for the d4 OsCl62– impurity ion in K2PtCl6 and Cs2ZrCl6 cubic crystals. Mol. Phys. 35, 1623–1636 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Douglas, I. N. Optical spectra of IrCl62− in single crystals of Cs2ZrCl6, Cs2HfCl6, and K2SnCl6 at low temperatures. J. Chem. Phys. 51, 3066–3073 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Andrae, D., Häußermann, U., Dolg, M., Stoll, H. & Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).

    Article 
    CAS 

    Google Scholar 

  • Sousa, S. F. et al. Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes. J. Comput. Chem. 30, 2752–2763 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, J. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 17, 261–267 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Z., Folgueras, M. C., Le, H. K. D., Gao, M. & Yang, P. Laser-accelerated phase transformation in cesium lead iodide perovskite. Matter 5, 1455–1465 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, S. et al. Novel lead-free material Cs2PtI6 with narrow bandgap and ultra-stability for Its photovoltaic application. ACS Appl. Mater. Interfaces 12, 44700–44709 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ju, M.-G. et al. Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett. 3, 297–304 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sakai, N. et al. Solution-processed cesium hexabromopalladate(IV), Cs2PdBr6, for optoelectronic applications. J. Am. Chem. Soc. 139, 6030–6033 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Y. et al. Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photonics 6, 196–203 (2019).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *