Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).
Google Scholar
Jin, K. et al. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).
Google Scholar
Zhang, R.-Z., Gucci, F., Zhu, H., Chen, K. & Reece, M. J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018).
Google Scholar
Stolze, K., Tao, J., von Rohr, F. O., Kong, T. & Cava, R. J. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem. Mater. 30, 906–914 (2018).
Google Scholar
Nguyen, T. X., Liao, Y., Lin, C., Su, Y. & Ting, J. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 31, 2101632 (2021).
Google Scholar
Roychowdhury, S., Ghosh, T., Arora, R., Waghmare, U. V. & Biswas, K. Stabilizing n‐type cubic GeSe by entropy‐driven alloying of AgBiSe2: ultralow thermal conductivity and promising thermoelectric performance. Angew. Chem. Int. Ed. Engl. 130, 15387–15391 (2018).
Google Scholar
Deng, Z. et al. Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping. Chem. Mater. 32, 6070–6077 (2020).
Google Scholar
Luo, Y. et al. High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering. J. Am. Chem. Soc. 142, 15187–15198 (2020).
Google Scholar
Wu, Z., Bei, H., Pharr, G. M. & George, E. P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014).
Google Scholar
Rost, C. M., Rak, Z., Brenner, D. W. & Maria, J. Local structure of the MgxNixCoxCuxZnxO (x=0.2) entropy‐stabilized oxide: an EXAFS study. J. Am. Ceram. Soc. 100, 2732–2738 (2017).
Google Scholar
Jiang, S. et al. A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018).
Google Scholar
Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).
Google Scholar
Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).
Google Scholar
Gao, M. et al. The making of a reconfigurable semiconductor with a soft ionic lattice. Matter 4, 3874–3896 (2021).
Google Scholar
Lai, M. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl Acad. Sci. USA 115, 11929–11934 (2018).
Google Scholar
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).
Google Scholar
Folgueras, M. C. et al. Ligand-free processable perovskite semiconductor ink. Nano Lett. 21, 8856–8862 (2021).
Google Scholar
Folgueras, M. C. et al. Lattice dynamics and optoelectronic properties of vacancy-ordered double perovskite Cs2TeX6 (X=Cl–, Br–, I–) single crystals. J. Phys. Chem. C 125, 25126–25139 (2021).
Google Scholar
Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).
Google Scholar
Barfüßer, A. et al. Confined excitons in spherical-like halide perovskite quantum dots. Nano Lett. 22, 8810–8817 (2022).
Google Scholar
Baimuratov, A. S. & Högele, A. Valley-selective energy transfer between quantum dots in atomically thin semiconductors. Sci. Rep. 10, 16971 (2020).
Google Scholar
Kovalev, D. et al. Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules. Phys. Rev. Lett. 89, 137401 (2002).
Google Scholar
Yeh, J.-W., Chen, Y.-L., Lin, S.-J. & Chen, S.-K. High-entropy alloys – a new era of exploitation. Mater. Sci. Forum 560, 1–9 (2007).
Google Scholar
Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).
Google Scholar
Gali, A. & George, E. P. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013).
Google Scholar
Anand Sekhar, R., Samal, S., Nayan, N. & Bakshi, S. R. Microstructure and mechanical properties of Ti-Al-Ni-Co-Fe based high entropy alloys prepared by powder metallurgy route. J. Alloys Compd. 787, 123–132 (2019).
Google Scholar
Solari, S. F. et al. Stabilization of lead-reduced metal halide perovskite nanocrystals by high-entropy alloying. J. Am. Chem. Soc. 144, 5864–5870 (2022).
Google Scholar
Karim, M. M. S. et al. Anion distribution, structural distortion, and symmetry-driven optical band gap bowing in mixed halide Cs2SnX6 vacancy ordered double perovskites. Chem. Mater. 31, 9430–9444 (2019).
Google Scholar
Hendrickson, W. A., Smith, J. L. & Sheriff, S. Direct phase determination based on anomalous scattering. Methods Enzymol. 115, 41–55 (1985).
Google Scholar
Evans, G. & Pettifer, R. F. CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J. Appl. Crystallogr. 34, 82–86 (2001).
Google Scholar
Luo, H., Li, Z. & Raabe, D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).
Google Scholar
Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).
Google Scholar
Zhong, Y. et al. Multi-dopant engineering in perovskite Cs2SnCl6: white light emitter and spatially luminescent heterostructure. Inorg. Chem. 60, 17357–17363 (2021).
Google Scholar
Abfalterer, A. et al. Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals. ACS Mater. Lett. 2, 1644–1652 (2020).
Google Scholar
Saeki, K., Fujimoto, Y., Koshimizu, M., Yanagida, T. & Asai, K. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6. Appl. Phys. Express 9, 042602 (2016).
Google Scholar
Wu, R., Liu, Y., Hu, S., Fu, P. & Xiao, Z. Red‐emitting perovskite variant Cs2PtCl6 phosphor: material design, luminous mechanism, and application in high‐color‐rendering white light‐emitting diodes. Adv. Opt. Mater. 10, 2201081 (2022).
Google Scholar
McCall, K. M., Morad, V., Benin, B. M. & Kovalenko, M. V. Efficient lone-pair-driven luminescence: structure–property relationships in emissive 5s2 metal halides. ACS Mater. Lett. 2, 1218–1232 (2020).
Google Scholar
Chang, T. et al. Efficient energy transfer in Te4+-doped Cs2ZrCl6 vacancy-ordered perovskites and ultrahigh moisture stability via A-site Rb-alloying strategy. J. Phys. Chem. Lett. 12, 1829–1837 (2021).
Google Scholar
MacManus, J. P., Hogue, C. W., Marsden, B. J., Sikorska, M. & Szabo, A. G. Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors. J. Biol. Chem. 265, 10358–10366 (1990).
Google Scholar
Yun, C. S. et al. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc. 127, 3115–3119 (2005).
Google Scholar
Zeltmann, A. H., Matwiyoff, N. A. & Morgan, L. O. Nuclear magnetic resonance of oxygen-17 and chlorine-35 in aqueous hydrochloric acid solutions of cobalt(II). I. Line shifts and relative abundances of solution species. J. Phys. Chem. 72, 121–127 (1968).
Google Scholar
Brady, G. W., Robin, M. B. & Varimbi, J. The structure of ferric chloride in neutral and acid solutions. Inorg. Chem. 3, 1168–1173 (1964).
Google Scholar
Tan, Z. et al. Lead‐free perovskite variant solid solutions Cs2Sn1–xTexCl6: bright luminescence and high anti‐water stability. Adv. Mater. 32, 2002443 (2020).
Google Scholar
CrysAlisPro v.1.171.42.90a (Rigaku Corporation, 2022).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
Google Scholar
Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).
Google Scholar
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).
Google Scholar
SAINT v.8.38A (Bruker AXS, Inc., 2012).
APEX3 v.2017.3-0 (Bruker AXS, Inc., 2012).
SADABS (Bruker AXS, Inc., 2017).
Gaussian v.16, Revision C.01, Frisch, M. J. et al. (Gaussian, Inc., 2016).
Gamelin, D. R. & Güdel, H. U. Spectroscopy and dynamics of Re4+ near-IR-to-visible luminescence upconversion. Inorg. Chem. 38, 5154–5164 (1999).
Google Scholar
Khan, S. M., Patterson, H. H. & Engstrom, H. Multiple state luminescence for the d4 OsCl62– impurity ion in K2PtCl6 and Cs2ZrCl6 cubic crystals. Mol. Phys. 35, 1623–1636 (1978).
Google Scholar
Douglas, I. N. Optical spectra of IrCl62− in single crystals of Cs2ZrCl6, Cs2HfCl6, and K2SnCl6 at low temperatures. J. Chem. Phys. 51, 3066–3073 (1969).
Google Scholar
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
Google Scholar
Andrae, D., Häußermann, U., Dolg, M., Stoll, H. & Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).
Google Scholar
Sousa, S. F. et al. Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes. J. Comput. Chem. 30, 2752–2763 (2009).
Google Scholar
Lin, J. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 17, 261–267 (2018).
Google Scholar
Lin, Z., Folgueras, M. C., Le, H. K. D., Gao, M. & Yang, P. Laser-accelerated phase transformation in cesium lead iodide perovskite. Matter 5, 1455–1465 (2022).
Google Scholar
Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).
Google Scholar
Yang, S. et al. Novel lead-free material Cs2PtI6 with narrow bandgap and ultra-stability for Its photovoltaic application. ACS Appl. Mater. Interfaces 12, 44700–44709 (2020).
Google Scholar
Ju, M.-G. et al. Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett. 3, 297–304 (2018).
Google Scholar
Sakai, N. et al. Solution-processed cesium hexabromopalladate(IV), Cs2PdBr6, for optoelectronic applications. J. Am. Chem. Soc. 139, 6030–6033 (2017).
Google Scholar
Xu, Y. et al. Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photonics 6, 196–203 (2019).
Google Scholar