Survey reveals aluminum remains fastest growing automotive material, emerging as a preferred metal for electric vehicles. The Aluminum Association https://www.aluminum.org/survey-reveals-aluminum-remains-fastest-growing-automotive-material-emerging-preferred-metal (2020).
Liu, Y. & Naidu, R. Hidden values in bauxite residue (red mud): recovery of metals. Waste Manag. 34, 2662–2673 (2014).
Google Scholar
Agrawal, S. & Dhawan, N. Evaluation of red mud as a polymetallic source – a review. Miner. Eng. 171, 107084 (2021).
Google Scholar
Archambo, M. & Kawatra, S. K. Red mud: fundamentals and new avenues for utilization. Miner. Process. Extr. Metall. Rev. 42, 427–450 (2021).
Google Scholar
Mukiza, E., Zhang, L. L. & Zhang, N. Utilization of red mud in road base and subgrade materials: a review. Resour. Conserv. Recycl. 141, 187–199 (2019).
Google Scholar
Silveira, N. C. G., Martins, M. L. F., Bezerra, A. C. S. & Araújo, F. G. S. Red mud from the aluminium industry: production, characteristics, and alternative applications in construction materials—a review. Sustainability 13, 12741 (2021).
Google Scholar
Service, R. F. Red alert. Science 369, 910–911 (2020).
Google Scholar
Bhoi, B., Behera, P. R. & Mishra, C. R. in Proc. 6th International Symposium on High-Temperature Metallurgical Processing (eds Jiang, T. et al.) 19–26 (Springer, 2015).
Bhoi, B., Rajput, P. & Mishra, C. R. in Proc. 35th International ICSOBA Conference 565–574 (ICSOBA, 2017).
Parhi, B. R. et al. Upgradation of bauxite by molecular hydrogen and hydrogen plasma. Int. J. Miner. Metall. Mater. 23, 1141–1149 (2016).
Google Scholar
Chen, Z., Zeilstra, C., van der Stel, J., Sietsma, J. & Yang, Y. Thermal decomposition reaction kinetics of hematite ore. ISIJ Int. 60, 65–72 (2020).
Google Scholar
Yanti, E. D. & Pratiwi, I. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review. IOP Conf. Ser. Earth Environ. Sci. 118, 12078 (2018).
Google Scholar
Zeng, H. et al. Progress on the industrial applications of red mud with a focus on China. Minerals 10, 773 (2020).
Google Scholar
Samal, S. Utilization of red mud as a source for metal ions—a review. Materials 14, 2211 (2021).
Google Scholar
Souza Filho, I. R. et al. Sustainable steel through hydrogen plasma reduction of iron ore: process, kinetics, microstructure, chemistry. Acta Mater. 213, 116971 (2021).
Google Scholar
Gillet, P., Guyot, F., Price, G. D., Tournerie, B. & Le Cleach, A. Phase changes and thermodynamic properties of CaTiO3. Spectroscopic data, vibrational modelling and some insights on the properties of MgSiO3 perovskite. Phys. Chem. Miner. 20, 159–170 (1993).
Google Scholar
Petersen, H. et al. Crystal structures of two titanium phosphate-based proton conductors: ab initio structure solution and materials properties. Inorg. Chem. 61, 2379–2390 (2022).
Google Scholar
Kim, S. H. et al. Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700 °C. Acta Mater. 212, 116933 (2021).
Google Scholar
Hayashi, S. & Iguchi, Y. Hydrogen reduction of liquid iron oxide fines in gas-conveyed systems. ISIJ Int. 34, 555–561 (1994).
Google Scholar
Borisov, A., Behrens, H. & Holtz, F. The effect of titanium and phosphorus on ferric/ferrous ratio in silicate melts: an experimental study. Contrib. Mineral. Petrol. 166, 1577–1591 (2013).
Google Scholar
Li, W., Li, Z., Wang, N. & Gu, H. Selective extraction of rare earth elements from red mud using oxalic and sulfuric acids. J. Environ. Chem. Eng. 10, 108650 (2022).
Google Scholar
Borra, C. R., Blanpain, B., Pontikes, Y., Binnemans, K. & Van Gerven, T. Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review. J. Sustain. Metall. 2, 365–386 (2016).
Google Scholar
Gentzmann, M. C., Paul, A., Serrano, J. & Adam, C. Understanding scandium leaching from bauxite residues of different geological backgrounds using statistical design of experiments. J. Geochem. Explor. 240, 107041 (2022).
Google Scholar
Jacobasch, E. et al. Economic evaluation of low-carbon steelmaking via coupling of electrolysis and direct reduction. J. Clean. Prod. 328, 129502 (2021).
Google Scholar
Jayasankar, K. et al. Production of pig iron from red mud waste fines using thermal plasma technology. Int. J. Miner. Metall. Mater. 19, 679–684 (2012).
Google Scholar
Wang, L., Sun, N., Tang, H. & Sun, W. A review on comprehensive utilization of red mud and prospect analysis. Minerals 9, 362 (2019).
Google Scholar
Valeev, D., Zinoveev, D., Kondratiev, A., Lubyanoi, D. & Pankratov, D. Reductive smelting of neutralized red mud for iron recovery and produced pig iron for heat-resistant castings. Metals 10, 32 (2019).
Google Scholar
Mayes, W. M. et al. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environ. Sci. Technol. 45, 5147–5155 (2011).
Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).
Google Scholar
Toraya, H. A new method for quantitative phase analysis using X-ray powder diffraction: direct derivation of weight fractions from observed integrated intensities and chemical compositions of individual phases. J. Appl. Crystallogr. 49, 1508–1516 (2016).
Google Scholar
Vogl, V., Åhman, M. & Nilsson, L. J. Assessment of hydrogen direct reduction for fossil-free steelmaking. J. Clean. Prod. 203, 736–745 (2018).
Google Scholar
Balomenos, E., Davris, P., Pontikes, Y. & Panias, D. Mud2Metal: lessons learned on the path for complete utilization of bauxite residue through industrial symbiosis. J. Sustain. Metall. 3, 551–560 (2017).
Google Scholar
Borra, C. R., Blanpain, B., Pontikes, Y., Binnemans, K. & Van Gerven, T. Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J. Sustain. Metall. 2, 28–37 (2016).
Google Scholar
Wu, J., Zhang, F., Li, H., Fang, B. & Xu, X. Preparation and reaction mechanism of red mud based ceramic simple bricks. J. Wuhan Univ. Technol. Mater. Sci. Ed. 25, 1001–1005 (2010).
Google Scholar
MatWeb: Online Materials Information Resource. https://www.matweb.com/.
Degremont. Drying unit energy consumption. https://www.suezwaterhandbook.com/processes-and-technologies/dewatered-sludge-treatment/drying/drying-unit-energy-consumption.
Trading Economics. Iron Ore 62% FE. https://tradingeconomics.com/commodity/ironore62.
Chandio, A. D. et al. Beneficiation of low-grade dilband iron ore by reduction roasting. Metals 13, 296 (2023).
Google Scholar