Strange IndiaStrange India


  • Survey reveals aluminum remains fastest growing automotive material, emerging as a preferred metal for electric vehicles. The Aluminum Association https://www.aluminum.org/survey-reveals-aluminum-remains-fastest-growing-automotive-material-emerging-preferred-metal (2020).

  • Liu, Y. & Naidu, R. Hidden values in bauxite residue (red mud): recovery of metals. Waste Manag. 34, 2662–2673 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Agrawal, S. & Dhawan, N. Evaluation of red mud as a polymetallic source – a review. Miner. Eng. 171, 107084 (2021).

    Article 
    CAS 

    Google Scholar 

  • Archambo, M. & Kawatra, S. K. Red mud: fundamentals and new avenues for utilization. Miner. Process. Extr. Metall. Rev. 42, 427–450 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mukiza, E., Zhang, L. L. & Zhang, N. Utilization of red mud in road base and subgrade materials: a review. Resour. Conserv. Recycl. 141, 187–199 (2019).

    Article 

    Google Scholar 

  • Silveira, N. C. G., Martins, M. L. F., Bezerra, A. C. S. & Araújo, F. G. S. Red mud from the aluminium industry: production, characteristics, and alternative applications in construction materials—a review. Sustainability 13, 12741 (2021).

    Article 
    CAS 

    Google Scholar 

  • Service, R. F. Red alert. Science 369, 910–911 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bhoi, B., Behera, P. R. & Mishra, C. R. in Proc. 6th International Symposium on High-Temperature Metallurgical Processing (eds Jiang, T. et al.) 19–26 (Springer, 2015).

  • Bhoi, B., Rajput, P. & Mishra, C. R. in Proc. 35th International ICSOBA Conference 565–574 (ICSOBA, 2017).

  • Parhi, B. R. et al. Upgradation of bauxite by molecular hydrogen and hydrogen plasma. Int. J. Miner. Metall. Mater. 23, 1141–1149 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chen, Z., Zeilstra, C., van der Stel, J., Sietsma, J. & Yang, Y. Thermal decomposition reaction kinetics of hematite ore. ISIJ Int. 60, 65–72 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yanti, E. D. & Pratiwi, I. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review. IOP Conf. Ser. Earth Environ. Sci. 118, 12078 (2018).

    Article 

    Google Scholar 

  • Zeng, H. et al. Progress on the industrial applications of red mud with a focus on China. Minerals 10, 773 (2020).

    Article 
    ADS 

    Google Scholar 

  • Samal, S. Utilization of red mud as a source for metal ions—a review. Materials 14, 2211 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Souza Filho, I. R. et al. Sustainable steel through hydrogen plasma reduction of iron ore: process, kinetics, microstructure, chemistry. Acta Mater. 213, 116971 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gillet, P., Guyot, F., Price, G. D., Tournerie, B. & Le Cleach, A. Phase changes and thermodynamic properties of CaTiO3. Spectroscopic data, vibrational modelling and some insights on the properties of MgSiO3 perovskite. Phys. Chem. Miner. 20, 159–170 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Petersen, H. et al. Crystal structures of two titanium phosphate-based proton conductors: ab initio structure solution and materials properties. Inorg. Chem. 61, 2379–2390 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. H. et al. Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700 °C. Acta Mater. 212, 116933 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hayashi, S. & Iguchi, Y. Hydrogen reduction of liquid iron oxide fines in gas-conveyed systems. ISIJ Int. 34, 555–561 (1994).

    Article 
    CAS 

    Google Scholar 

  • Borisov, A., Behrens, H. & Holtz, F. The effect of titanium and phosphorus on ferric/ferrous ratio in silicate melts: an experimental study. Contrib. Mineral. Petrol. 166, 1577–1591 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, W., Li, Z., Wang, N. & Gu, H. Selective extraction of rare earth elements from red mud using oxalic and sulfuric acids. J. Environ. Chem. Eng. 10, 108650 (2022).

    Article 
    CAS 

    Google Scholar 

  • Borra, C. R., Blanpain, B., Pontikes, Y., Binnemans, K. & Van Gerven, T. Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review. J. Sustain. Metall. 2, 365–386 (2016).

    Article 

    Google Scholar 

  • Gentzmann, M. C., Paul, A., Serrano, J. & Adam, C. Understanding scandium leaching from bauxite residues of different geological backgrounds using statistical design of experiments. J. Geochem. Explor. 240, 107041 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jacobasch, E. et al. Economic evaluation of low-carbon steelmaking via coupling of electrolysis and direct reduction. J. Clean. Prod. 328, 129502 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jayasankar, K. et al. Production of pig iron from red mud waste fines using thermal plasma technology. Int. J. Miner. Metall. Mater. 19, 679–684 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wang, L., Sun, N., Tang, H. & Sun, W. A review on comprehensive utilization of red mud and prospect analysis. Minerals 9, 362 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Valeev, D., Zinoveev, D., Kondratiev, A., Lubyanoi, D. & Pankratov, D. Reductive smelting of neutralized red mud for iron recovery and produced pig iron for heat-resistant castings. Metals 10, 32 (2019).

    Article 

    Google Scholar 

  • Mayes, W. M. et al. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environ. Sci. Technol. 45, 5147–5155 (2011).

  • Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Toraya, H. A new method for quantitative phase analysis using X-ray powder diffraction: direct derivation of weight fractions from observed integrated intensities and chemical compositions of individual phases. J. Appl. Crystallogr. 49, 1508–1516 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vogl, V., Åhman, M. & Nilsson, L. J. Assessment of hydrogen direct reduction for fossil-free steelmaking. J. Clean. Prod. 203, 736–745 (2018).

    Article 
    CAS 

    Google Scholar 

  • Balomenos, E., Davris, P., Pontikes, Y. & Panias, D. Mud2Metal: lessons learned on the path for complete utilization of bauxite residue through industrial symbiosis. J. Sustain. Metall. 3, 551–560 (2017).

    Article 

    Google Scholar 

  • Borra, C. R., Blanpain, B., Pontikes, Y., Binnemans, K. & Van Gerven, T. Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J. Sustain. Metall. 2, 28–37 (2016).

    Article 

    Google Scholar 

  • Wu, J., Zhang, F., Li, H., Fang, B. & Xu, X. Preparation and reaction mechanism of red mud based ceramic simple bricks. J. Wuhan Univ. Technol. Mater. Sci. Ed. 25, 1001–1005 (2010).

    Article 
    CAS 

    Google Scholar 

  • MatWeb: Online Materials Information Resource. https://www.matweb.com/.

  • Degremont. Drying unit energy consumption. https://www.suezwaterhandbook.com/processes-and-technologies/dewatered-sludge-treatment/drying/drying-unit-energy-consumption.

  • Trading Economics. Iron Ore 62% FE. https://tradingeconomics.com/commodity/ironore62.

  • Chandio, A. D. et al. Beneficiation of low-grade dilband iron ore by reduction roasting. Metals 13, 296 (2023).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *