Strange India All Strange Things About India and world


  • Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  • Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Google Scholar 

  • Watson, E. B. et al. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuaries Coasts 40, 662–681 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Deis, D. R., Mendelssohn, I. A., Fleeger, J. W., Bourgoin, S. M. & Lin, Q. Legacy effects of Hurricane Katrina influenced marsh shoreline erosion following the Deepwater Horizon oil spill. Sci. Total Environ. 672, 456–467 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bromberg, K. D. & Bertness, M. D. Reconstructing New England salt marsh losses using historical maps. Estuaries 28, 823–832 (2005).

    Google Scholar 

  • Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A. & Krauss, K. W. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Change Biol. 20, 147–157 (2014).

    Google Scholar 

  • Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).

  • Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshwater Res. 65, 934–941 (2014).

    Google Scholar 

  • Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Kirwan, M. L., Murray, A. B., Donnelly, J. P. & Corbett, D. R. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology 39, 507–510 (2011).

    Google Scholar 

  • Schieder, N. W., Walters, D. C. & Kirwan, M. L. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coasts 41, 940–951 (2018).

    Google Scholar 

  • White, E. E.Jr, Ury, E. A., Bernhardt, E. S. & Yang, X. Climate change driving widespread loss of coastal forested wetlands throughout the North American coastal plain. Ecosystems 25, 812–827 (2022).

    Google Scholar 

  • Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).

    Google Scholar 

  • Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 08302 (2019).

    Google Scholar 

  • Lyons, B. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 6, 557–568 (2020).

  • Dahl, T. E. Status and Trends of Wetlands in the Conterminous United States 2004 to 2009 (U.S. Department of the Interior, 2011).

  • Darrah, S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Ind. 99, 294–298 (2019).

    Google Scholar 

  • Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    CAS 

    Google Scholar 

  • Richards, D. R., Thompson, B. S. & Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 11, 4260 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Google Scholar 

  • Overduin, P. P. et al. Coastal changes in the Arctic. Geol. Soc. Spec. Publ. 388, 103–129 (2014).

    Google Scholar 

  • Barras, J. A. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana, Data Series 281 (U.S. Geological Survey, 2007).

  • Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. Glob. Change Biol. 27, 2856–2866 (2021).

    CAS 

    Google Scholar 

  • Coastal Protection and Restoration Authority of Louisiana. Louisiana’s Comprehensive Master Plan for a Sustainable Coast (Coastal Protection and Restoration Authority of Louisiana, 2017).

  • Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States, no. CO-OPS 083 (National Oceanic and Atmospheric Administration, 2017).

  • Peck, E. K., Wheatcroft, R. A. & Brophy, L. S. Controls on sediment accretion and blue carbon burial in tidal saline wetlands: insights from the Oregon Coast, USA. J. Geophys. Res. Biogeosci. 125, e2019JG005464 (2020).

    Google Scholar 

  • Chen, G. et al. Spatiotemporal mapping of salt marshes in the intertidal zone of China during 1985–2019. J. Remote Sens. 2022, 9793626 (2022).

    Google Scholar 

  • Laengner, M. L., Siteur, K. & van der Wal, D. Trends in the seaward extent of saltmarshes across Europe from long-term satellite data. Remote Sens. 11, 1653 (2019).

    Google Scholar 

  • Doughty, C. L. et al. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 39, 385–396 (2016).

    CAS 

    Google Scholar 

  • Vaughn, D. R., Bianchi, T. S., Shields, M. R., Kenney, W. F. & Osborne, T. Z. Increased organic carbon burial in northern Florida mangrove‐salt marsh transition zones. Glob. Biogeochem. Cycles 34, e2019GB006334 (2020).

    CAS 

    Google Scholar 

  • Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).

    Google Scholar 

  • Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Yando, E. S., Osland, M. J., Jones, S. F. & Hester, M. W. Jump‐starting coastal wetland restoration: a comparison of marsh and mangrove foundation species. Restor. Ecol. 27, 1145–1154 (2019).

    Google Scholar 

  • Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, X. et al. Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series. Remote Sens. Environ. 276, 113047 (2022).

    Google Scholar 

  • Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinmuller, H. E., Dittmer, K. M., White, J. R. & Chambers, L. G. Understanding the fate of soil organic matter in submerging coastal wetland soils: a microcosm approach. Geoderma 337, 1267–1277 (2019).

    CAS 

    Google Scholar 

  • Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Cui, L. et al. Dynamics of labile soil organic carbon during the development of mangrove and salt marsh ecosystems. Ecol. Indic. 129, 107875 (2021).

    CAS 

    Google Scholar 

  • Yang, W. et al. Seawall construction alters soil carbon and nitrogen dynamics and soil microbial biomass in an invasive Spartina alterniflora salt marsh in eastern China. Appl. Soil Ecol. 110, 1–11 (2017).

    CAS 

    Google Scholar 

  • United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (United Nations, 2015).

  • United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement (Climate Change Secretariat, 2015).

  • Gomez-Echeverri, L. Climate and development: enhancing impact through stronger linkages in the implementation of the Paris Agreement and the Sustainable Development Goals (SDGs). Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20160444 (2018).

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  • Lopes, C. L., Mendes, R., Caçador, I. & Dias, J. M. Assessing salt marsh extent and condition changes with 35 years of Landsat imagery: Tagus Estuary case study. Remote Sens. Environ. 247, 111939 (2020).

    Google Scholar 

  • Sun, C., Fagherazzi, S. & Liu, Y. Classification mapping of salt marsh vegetation by flexible monthly NDVI time-series using Landsat imagery. Estuar. Coast. Shelf Sci. 213, 61–80 (2018).

    Google Scholar 

  • Doughty, C. L. & Cavanaugh, K. C. Mapping coastal wetland biomass from high resolution unmanned aerial vehicle (UAV) imagery. Remote Sens. 11, 540 (2019).

    Google Scholar 

  • Jensen, J. R., Olson, G., Schill, S. R., Porter, D. E. & Morris, J. Remote sensing of biomass, leaf‐area‐index, and chlorophyll a and b content in the ACE Basin National Estuarine Research Reserve using sub‐meter digital camera imagery. Geocarto Int. 17, 27–36 (2002).

    Google Scholar 

  • Lumbierres, M., Méndez, P. F., Bustamante, J., Soriguer, R. & Santamaría, L. Modeling biomass production in seasonal wetlands using MODIS NDVI land surface phenology. Remote Sens. 9, 392 (2017).

    Google Scholar 

  • Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Google Scholar 

  • Lagomasino, D. et al. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nat. Commun. 12, 4003 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buffington, K. J., Dugger, B. D. & Thorne, K. M. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes. Estuar. Coast. Shelf Sci. 202, 212–221 (2018).

    Google Scholar 

  • Byrd, K. B. et al. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS J. Photogramm. Remote Sens. 139, 255–271 (2018).

    Google Scholar 

  • Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Donnell, J. P. & Schalles, J. F. Examination of abiotic drivers and their influence on Spartina alterniflora biomass over a twenty-eight year period using Landsat 5 TM satellite imagery of the Central Georgia Coast. Remote Sens. 8, 477 (2016).

    Google Scholar 

  • Taillie, P. J. et al. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15, 064010 (2020).

    Google Scholar 

  • Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 025002 (2019).

    Google Scholar 

  • Zhang, C., Durgan, S. D. & Lagomasino, D. Modeling risk of mangroves to tropical cyclones: a case study of Hurricane Irma. Estuar. Coast. Shelf Sci. 224, 108–116 (2019).

    Google Scholar 

  • Mondal, P., Dutta, T., Qadir, A. & Sharma, S. Radar and optical remote sensing for near real‐time assessments of cyclone impacts on coastal ecosystems. Remote. Sens. Ecol. Conserv. 8, 506–520 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Crotty, S. M. et al. Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes. Proc. Natl Acad. Sci. 117, 17891–17902 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Courtemanche, R. P. Jr, Hester, M. W. & Mendelssohn, I. A. Recovery of a Louisiana barrier island marsh plant community following extensive hurricane-induced overwash. J. Coast. Res. 15, 872–883 (1999).

    Google Scholar 

  • Ewanchuk, P. J. & Bertness, M. D. Recovery of a northern New England salt marsh plant community from winter icing. Oecologia 136, 616–626 (2003).

    PubMed 

    Google Scholar 

  • Flynn, K. M., McKee, K. L. & Mendelssohn, I. A. Recovery of freshwater marsh vegetation after a saltwater intrusion event. Oecologia 103, 63–72 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Olofsson, P., Foody, G. M., Stehman, S. V. & Woodcock, C. E. Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 129, 122–131 (2013).

    Google Scholar 

  • Hansen, M. C. et al. Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. 17, 034050 (2022).

    Google Scholar 

  • Cowardin, L. M., Carter, V., Golet, F. C. & LaRoe, E. T. Classification of Wetlands and Deepwater Habitats of the United States (U.S. Department of the Interior, 1979).

  • Viswanathan, C. et al. Salt marsh vegetation in India: species composition, distribution, zonation pattern and conservation implications. Estuar. Coast. Shelf Sci. 242, 106792 (2020).

    Google Scholar 

  • Edmund, H., Chamberlain, S., & Ram, K. Package ‘rnoaa’ (2014).

  • Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).

    Google Scholar 

  • Landsea, C., Franklin, J. & Beven, J. The Revised Atlantic Hurricane Database (HURDAT2). https://www.nhc.noaa.gov/data/hurdat/hurdat2-1851-2019-052520.txt (NOAA/NHC, 2015).

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Google Scholar 

  • QGIS Development Team. QGIS Geographic Information System 3.12.2 (Open Source Geospatial Foundation Project, 2020).

  • Gong, P. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).

    Google Scholar 

  • Thomas, N. et al. High-resolution mapping of biomass and distribution of marsh and forested wetlands in southeastern coastal Louisiana. Int. J. Appl. Earth Obs. Geoinf. 80, 257–267 (2019).

    Google Scholar 

  • Byrd, K. B. et al. Corrigendum to “A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States” [ISPRS J. Photogram. Rem. Sens. 139 (2018) 255–271]. ISPRS J. Photogramm. Remote Sens. 166, 63–67 (2020).

    Google Scholar 

  • Wang, F. et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl Sci. Rev. 8, nwaa296 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Coastal Carbon Research Coordination Network (CCRCN). Coastal Carbon Atlas. https://ccrcn.shinyapps.io/CoastalCarbonAtlas (2019).

  • Alongi, D. Carbon balance in salt marsh and mangrove ecosystems: a global synthesis. J. Mar. Sci. Eng. 8, 767 (2020).

    Google Scholar 

  • Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    CAS 

    Google Scholar 

  • Woodwell, G. M., Rich, P. H. & Hall, C. in Brookhaven Symposia in Biology, Vol. 24 221–240 (Brookhaven National Laboratory, 1973).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *