Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).
Google Scholar
Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).
Google Scholar
Ley, S. V. & Thomas, A. W. Modern synthetic methods for copper-mediated C(aryl)–O, C(aryl)–N, and C(aryl)–S bond formation. Angew. Chem. Int. Ed. 42, 5400–5449 (2003).
Google Scholar
Dorel, R., Grugel, C. P. & Haydl, A. M. The Buchwald–Hartwig amination after 25 years. Angew. Chem. Int. Ed. 58, 17118–17129 (2019).
Google Scholar
Diccianni, J. B. & Diao, T. N. Mechanisms of nickel-catalyzed cross-coupling reactions. Trends Chem. 1, 830–844 (2019).
Google Scholar
Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).
Google Scholar
Zhang, J., Wang, S. Y., Zhang, Y. & Feng, Z. Iron-catalyzed cross-coupling reactions for the construction of carbon–heteroatom bonds. Asian J. Org. Chem. 9, 1519–1531 (2020).
Google Scholar
Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).
Google Scholar
Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).
Google Scholar
Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B. & Johannes, J. W. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc. 138, 1760–1763 (2016).
Google Scholar
Qin, Y. Z., Sun, R., Gianoulis, N. P. & Nocera, D. G. Photoredox nickel-catalyzed C–S cross-coupling: mechanism, kinetics, and generalization. J. Am. Chem. Soc. 143, 2005–2015 (2021).
Google Scholar
Escobar, R. A. & Johannes, J. W. A unified and practical method for carbon–heteroatom cross-coupling using nickel/photo dual catalysis. Chem. Eur. J. 26, 5168–5173 (2020).
Google Scholar
Kullmer, C. N. P. et al. Accelerating reaction generality and mechanistic insight through additive mapping. Science 376, 532–539 (2022).
Google Scholar
Ahneman, D. T., Estrada, J. G., Lin, S. S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).
Google Scholar
Itoh, T. & Mase, T. Practical thiol surrogates and protective groups for arylthiols for Suzuki–Miyaura conditions. J. Org. Chem. 71, 2203–2206 (2006).
Google Scholar
Wolfe, J. P., Ahman, J., Sadighi, J. P., Singer, R. A. & Buchwald, S. L. An ammonia equivalent for the palladium-catalyzed amination of aryl halides and triflates. Tetrahedron Lett. 38, 6367–6370 (1997).
Google Scholar
Ghosh, A. K. & Brindisi, M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 58, 2895–2940 (2015).
Google Scholar
Nakamura, Y., Maruya, K.-i. & Mizoroki, T. A study of the ligand-exchange of bromo(o-tolyl)bis(triphenylphosphine)nickel(II) with amine by means of 31P- spectroscopy and 13C-NMR spectroscopy. Bull. Chem. Soc. Jpn 53, 3089–3092 (1980).
Google Scholar
Noel, T. et al. Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation. Chem. Sci. 2, 287–290 (2011).
Google Scholar
Sun, R., Qin, Y. Z. & Nocera, D. G. General paradigm in photoredox nickel-catalyzed cross-coupling allows for light-free access to reactivity. Angew. Chem. Int. Ed. 59, 9527–9533 (2020).
Google Scholar
Till, N. A., Tian, L., Dong, Z., Scholes, G. D. & MacMillan, D. W. C. Mechanistic analysis of metallaphotoredox C–N coupling: photocatalysis initiates and perpetuates Ni(I)/Ni(III) coupling activity. J. Am. Chem. Soc. 142, 15830–15841 (2020).
Google Scholar
Holland, P. L., Andersen, R. A. & Bergman, R. G. Application of the E–C approach to understanding the bond energies thermodynamics of late-metal amido, aryloxo and alkoxo complexes: an alternative to pπ/dπ repulsion. Comments Inorg. Chem. 21, 115–129 (1999).
Google Scholar
Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).
Google Scholar
Lavagnino, M. N., Liang, T. & MacMillan, D. W. C. HARC as an open-shell strategy to bypass oxidative addition in Ullmann–Goldberg couplings. Proc. Natl Acad. Sci. USA 117, 21058–21064 (2020).
Google Scholar
Vinogradova, E. V., Park, N. H., Fors, B. P. & Buchwald, S. L. Palladium-catalyzed synthesis of N-aryl carbamates. Org. Lett. 15, 1394–1397 (2013).
Google Scholar