Strange India All Strange Things About India and world


  • 1.

    Guzik, P. et al. Initial characterization of interstellar comet 2I/Borisov. Nat. Astron. 4, 53–57 (2020).

    ADS 

    Google Scholar 

  • 2.

    Jewitt, D. & Luu, J. Initial characterization of interstellar comet 2I/2019 Q4 (Borisov). Astrophys. J. Lett. 886, 29 (2019).

  • 3.

    Fraser, W. C. et al. The tumbling rotational state of 1I/‘Oumuamua. Nat. Astron. 2, 383–386 (2018).

    ADS 

    Google Scholar 

  • 4.

    Meech, K. J. et al. A brief visit from a red and extremely elongated interstellar asteroid. Nature 552, 378–381 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Drahus, M. et al. Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past. Nat. Astron. 2, 407–412 (2018).

    ADS 

    Google Scholar 

  • 6.

    Micheli, M. et al. Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua). Nature 559, 223–226 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Fitzsimmons, A. et al. Detection of CN gas in interstellar object 2I/Borisov. Astrophys. J. 885, L9 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 8.

    De León, J. et al. Visible and near-infrared observations of interstellar comet 2I/Borisov with the 10.4-m GTC and the 3.6-m TNG telescopes. Mon. Not. R. Astron. Soc. 495, 2053–2062 (2020).

    ADS 

    Google Scholar 

  • 9.

    Kareta, T. et al. Carbon chain depletion of 2I/Borisov. Astrophys. J. 889, L38 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Lin, H. W. et al. Detection of diatomic carbon in 2I/Borisov. Astrophys. J. 889, L30 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    McKay, A. J., Cochran, A. L., Dello Russo, N. & DiSanti, M. A. Detection of a water tracer in interstellar comet 2I/Borisov. Astrophys. J. 889, L10 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Bannister, M. T. et al. Interstellar comet 2I/Borisov as seen by MUSE: C2, NH2 and red CN detections. Preprint at https://arxiv.org/abs/2001.11605 (2020).

  • 13.

    Jehin, E. et al. CBET 4719: COMET 2I/2019 Q4. http://www.cbat.eps.harvard.edu/cbet/004700/CBET004719.txt (2020).

  • 14.

    Cordiner, M. A. et al. Unusually high CO abundance of the first active interstellar comet. Nat. Astron. 4, 861–866 (2020).

    ADS 

    Google Scholar 

  • 15.

    Bodewits, D. et al. The carbon monoxide-rich interstellar comet 2I/Borisov. Nat. Astron. 4, 867–871 (2020).

    ADS 

    Google Scholar 

  • 16.

    Feldman, P., Cochran, A. & Combi, M. in Comets II (eds Festou, M., Keller, H. U. & Weaver, H. A.) 425–447 (Univ. Arizona Press, 2004).

  • 17.

    Manfroid, J., Hutsemékers, D. & Jehin, E. Iron and nickel atoms in cometary atmospheres even far from the Sun. Nature https://doi.org/10.1038/s41586-021-03435-0 (2021).

  • 18.

    Preston, G. The spectrum of comet Ikeya-Seki (1965f). Astrophys. J. 147, 718–742 (1967).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Slaughter, C. The emission spectrum of comet Ikeya-Seki 1965-f at perihelion passage. Astron. J. 74, 929–943 (1969).

    ADS 

    Google Scholar 

  • 20.

    Fulle, M. et al. Discovery of the atomic iron tail of comet McNaught using the heliospheric imager on STEREO. Astrophys. J. 661, L93 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Kiefer, F. et al. Fe I in the β Pictoris circumstellar gas disk. II. Time variations in the iron circumstellar gas. Astron. Astrophys. 621, A58 (2019).

    CAS 

    Google Scholar 

  • 22.

    Kim, S. J., A’Hearn, M. F., Wellnitz, D. D., Meier, R. & Lee, Y. S. The rotational structure of the B–X system of sulfur dimers in the spectra of Comet Hyakutake (C/1996 B2). Icarus 166, 157–166 (2003).

  • 23.

    Valk, J. H. & O’Dell, C. R. Near-ultraviolet spectroscopy of comet Austin (1989c1). Astrophys. J. 388, 621–632 (1992).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Cochran, A. L. A search for N2+ in spectra of comet C/2002 C1 (Ikeya-Zhang). Astrophys. J. 576, L165–L168 (2002).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Cochran, A. L. & McKay, A. J. Strong CO+ and N2+ emission in comet C/2016 R2 (Pan-STARRS). Astrophys. J. Lett. 854, L10 (2018).

    ADS 

    Google Scholar 

  • 26.

    Opitom, C. et al. High resolution optical spectroscopy of the N2-rich comet C/2016 R2 (PanSTARRS). Astron. Astrophys. 624, A64 (2019).

    CAS 

    Google Scholar 

  • 27.

    Swings, P. Complex structure of cometary bands tentatively ascribed to the contour of the solar spectrum. Lick Obs. Bull. 19, 131 (1941).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Peck, E. R. & Reeder, K. Dispersion of air. J. Opt. Soc. Am. 62, 958–962 (1972).

  • 29.

    Haser, L. Distribution d’intensité dans la tête d’une comète. Bull. Acad. R. Sci. Liege 43, 740–750 (1957).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • 30.

    Combi, M. R., Harris, W. M. & Skyth, W. M. in Comets II (eds Festou, M., Keller, H. U. & Weaver, H. A.) 523–554 (Univ. Arizona Press, 2004).

  • 31.

    Huebner, W. F. & Mukherjee, J. Photoionization and photodissociation rates in solar and blackbody radiation fields. Planet. Space Sci. 106, 11–45 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 32.

    A’Hearn, M. F., Millis, R. C., Schleicher, D. G., Osip, D. J. & Birch, P. V. The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976–1992. Icarus 118, 223–270 (1995).

    ADS 

    Google Scholar 

  • 33.

    Johnson, J. A. Populating the periodic table: nucleosynthesis of the elements. Science 363, 474–478 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Wasson, J. T. Meteorites 11–38 (Springer, 1974).

  • 35.

    Goldberg, R. A. & Aikin, A. C. Comet Encke: meteor metallic ion identification by mass spectrometer. Science 180, 294–296 (1973).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Jessberger, E. K., Christoforidis, A. & Kissel, J. Aspects of the major element composition of Halley’s dust. Nature 332, 691–695 (1988).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Flynn, G. J. et al. Elemental compositions of comet 81P/Wild 2 samples collected by Stardust. Science 314, 1731–1735 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Zolensky, M. E. et al. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314, 1735–1739 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Chochol, D., Rušín, V., Kulčár, L. & Vanýsek, V. Emission features in the solar corona after the perihelion passage of Comet 1979 XI. Astrophys. Space Sci. 91, 71–77 (1983).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Hoeijmakers, H. J. et al. Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b. Nature 560, 453–455 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Hoeijmakers, H. J. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). Astron. Astrophys. 641, A123 (2020).

    CAS 

    Google Scholar 

  • 42.

    Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 43.

    Xu, S. et al. The chemical composition of an extrasolar Kuiper-belt-object. Astrophys. J. Lett. 836, L7 (2017).

    ADS 

    Google Scholar 

  • 44.

    Prialnik, D., Benkhoff, J. & Podolak, M. in Comets II (eds Festou, M., Keller, H. U. & Weaver, H. A.) 359–387 (Univ. Arizona Press, 2004).

  • 45.

    Rubin, M. et al. Elemental and molecular abundances in comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 489, 594–607 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    Ivezić, Ž., et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    ADS 

    Google Scholar 

  • 47.

    Freudling, W. et al. Automated data reduction workflows for astronomy. The ESO Reflex environment. Astron. Astrophys. 559, A96 (2013).

    Google Scholar 

  • 48.

    Kurucz, R. L. New atlases for solar flux, irradiance, central intensity, and limb intensity. Mem. Soc. Astron. Ital. 8, 189 (2005).

    ADS 

    Google Scholar 

  • 49.

    Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (v.5.7.1) (National Institute of Standards and Technology, accessed 22 October 2020); https://doi.org/10.18434/T4W30F.

  • 50.

    Haser, L., Oset, S. & Bodewits, D. Intensity distribution in the heads of comets. Planet. Sci. J. 1, 83 (2020).

    Google Scholar 

  • 51.

    Combi, M. R. & Delsemme, A. H. Neutral cometary atmospheres. I—An average random walk model for photodissociation in comets. Astrophys. J. 237, 633–640 (1980).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Schleicher, D. G. & A’Hearn, M. F. The fluorescence of cometary OH. Astrophys. J. 331, 1058–1077 (1988).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Schleicher, D. G. The fluorescence efficiencies of the CN violet bands in comets. Astron. J. 140, 973–984 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 54.

    Bohlin, R. C., Gordon, K. D. & Tremblay P.-E. Techniques and review of absolute flux calibration from the ultraviolet to the mid-infrared. Publ. Astron. Soc. Pac. 126, 711 (2014).

  • 55.

    Hall, L. A. & Anderson, G. P. High-resolution solar spectrum between 2000 and 3100 Å. J. Geophys. Res. 96, 12927 (1991).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *