Peebles, P. J. E. The void phenomenon. Astrophys. J. 557, 495–504 (2001).
Google Scholar
Kreckel, K. et al. Only the lonely: H I imaging of void galaxies. Astron. J. 141, 4 (2011).
Google Scholar
Pan, D. C., Vogeley, M. S., Hoyle, F., Choi, Y.-Y. & Park, C. Cosmic voids in Sloan Digital Sky Survey data release 7. Mon. Not. R. Astron. Soc. 421, 926–934 (2012).
Google Scholar
Varela, J., Betancort-Rijo, J., Trujillo, I. & Ricciardelli, E. The orientation of disk galaxies around large cosmic voids. Astrophys. J. 744, 82 (2012).
Google Scholar
van de Weygaert, R. Voids and the cosmic web: cosmic depression & spatial complexity. In Proc. of the International Astronomical Union, Vol. 308 (eds van de Weygaert, R., Shandarin, S., Saar, E. & Einasto, J.) 493–523 (Cambridge Univ. Press, 2016).
Rojas, R. R., Vogeley, M. S., Hoyle, F. & Brinkmann, J. Photometric properties of void galaxies in the Sloan Digital Sky Survey. Astrophys. J. 617, 50–63 (2004).
Google Scholar
Rojas, R. R., Vogeley, M. S., Hoyle, F. & Brinkmann, J. Spectroscopic properties of void galaxies in the Sloan Digital Sky Survey. Astrophys. J. 624, 571–585 (2005).
Google Scholar
Patiri, S. G., Prada, F., Holtzman, J., Klypin, A. & Betancort-Rijo, J. The properties of galaxies in voids. Mon. Not. R. Astron. Soc. 372, 1710–1720 (2006).
Google Scholar
Park, C. et al. Environmental dependence of properties of galaxies in the Sloan Digital Sky Survey. Astrophys. J. 658, 898–916 (2007).
Google Scholar
Hoyle, F., Vogeley, M. S. & Pan, D. Photometric properties of void galaxies in the Sloan Digital Sky Survey data release 7. Mon. Not. R. Astron. Soc. 426, 3041–3050 (2012).
Google Scholar
Kreckel, K. et al. The Void Galaxy Survey: optical properties and H I morphology and kinematics. Astron. J. 144, 16 (2012).
Google Scholar
Ricciardelli, E., Cava, A., Varela, J. & Quilis, V. The star formation activity in cosmic voids. Mon. Not. R. Astron. Soc. 445, 4045–4054 (2014).
Google Scholar
Beygu, B. et al. The Void Galaxy Survey: star formation properties. Mon. Not. R. Astron. Soc. 458, 394–409 (2016).
Google Scholar
Florez, J. et al. Void galaxies follow a distinct evolutionary path in the Environmental COntext Catalog. Astrophys. J. 906, 97 (2021).
Google Scholar
Szomoru, A., van Gorkom, J. H., Gregg, M. D. & Strauss, M. A. An HI survey of the Bootes void. II. The analysis. Astron. J. 111, 2150 (1996).
Google Scholar
Beygu, B., Kreckel, K., van de Weygaert, R., van der Hulst, J. M. & van Gorkom, J. H. An interacting galaxy system along a filament in a void. Astron. J. 145, 120 (2013).
Google Scholar
Calar Alto void integral-field treasury survey. CAVITY https://cavity.caha.es/.
Calar Alto Observatory. CAHA https://www.caha.es/.
El-Ad, H. & Piran, T. Voids in the large-scale structure. Astrophys. J. 491, 421–435 (1997).
Google Scholar
Hoyle, F. & Vogeley, M. S. Voids in the Point Source Catalogue Survey and the Updated Zwicky Catalog. Astrophys. J. 566, 641–651 (2002).
Google Scholar
Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. ApJS 182, 543–558 (2009).
Google Scholar
Tempel, E., Tuvikene, T., Kipper, R. & Libeskind, N. I. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems. Astron. Astrophys. 602, 100 (2017).
Google Scholar
Abell, G. O., Corwin, HaroldJ.,G. & Olowin, R. P. A catalog of rich clusters of galaxies. ApJS 70, 1 (1989).
Google Scholar
Strauss, M. A. et al. Spectroscopic target selection in the Sloan Digital Sky Survey: the main galaxy sample. Astron. J. 124, 1810–1824 (2002).
Google Scholar
Argudo-Fernández, M. et al. Catalogues of isolated galaxies, isolated pairs, and isolated triplets in the local Universe. Astron. Astrophys. 578, 110 (2015).
Google Scholar
Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).
Google Scholar
Falcón-Barroso, J. et al. An updated MILES stellar library and stellar population models. Astron. Astrophys. 532, 95 (2011).
Google Scholar
Vazdekis, A. et al. Evolutionary stellar population synthesis with MILES – II. Scaled-solar and α-enhanced models. Mon. Not. R. Astron. Soc. 449, 1177–1214 (2015).
Google Scholar
Vazdekis, A., Koleva, M., Ricciardelli, E., Röck, B. & Falcón-Barroso, J. UV-extended E-MILES stellar population models: young components in massive early-type galaxies. Mon. Not. R. Astron. Soc. 463, 3409–3436 (2016).
Google Scholar
Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. PASP 116, 138–147 (2004).
Google Scholar
Cappellari, M. Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions. Mon. Not. R. Astron. Soc. 466, 798–811 (2017).
Google Scholar
Cappellari, M. Full spectrum fitting with photometry in ppxf: non-parametric star formation history, metallicity and the quenching boundary from 3200 LEGA-C galaxies at redshift z ≈ 0.8. Preprint at https://doi.org/10.48550/arXiv.2208.14974 (2022).
Ocvirk, P., Pichon, C., Lançon, A. & Thiébaut, E. STECMAP: STEllar Content from high-resolution galactic spectra via Maximum A Posteriori. Mon. Not. R. Astron. Soc. 365, 46–73 (2006).
Google Scholar
Ocvirk, P., Pichon, C., Lançon, A. & Thiébaut, E. STECKMAP: STEllar Content and Kinematics from high resolution galactic spectra via Maximum A Posteriori. Mon. Not. R. Astron. Soc. 365, 74–84 (2006).
Google Scholar
Pietrinferni, A., Cassisi, S., Salaris, M. & Castelli, F. A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. Astrophys. J. 612, 168–190 (2004).
Google Scholar
Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).
Google Scholar
García-Benito, R. et al. Spatially resolved mass-to-light from the CALIFA survey. Mass-to-light ratio vs. color relations. Astron. Astrophys. 621, 120 (2019).
Google Scholar
Photometric predictions. MILES http://research.iac.es/proyecto/miles/pages/predicted-masses-and-photometric-observables-based-on-photometric-libraries.php.
Vazdekis, A., Casuso, E., Peletier, R. F. & Beckman, J. E. A new chemo-evolutionary population synthesis model for early-type galaxies. I. Theoretical basis. ApJS 106, 307 (1996).
Google Scholar
Blakeslee, J. P., Vazdekis, A. & Ajhar, E. A. Stellar populations and surface brightness fluctuations: new observations and models. Mon. Not. R. Astron. Soc. 320, 193–216 (2001).
Google Scholar
Vazdekis, A. et al. Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system. Mon. Not. R. Astron. Soc. 404, 1639–1671 (2010).
Google Scholar
Alfaro, I. G., Rodriguez, F., Ruiz, A. N. & Lambas, D. G. How galaxies populate haloes in very low-density environments. An analysis of the halo occupation distribution in cosmic voids. Astron. Astrophys. 638, 60 (2020).
Google Scholar
Artale, M. C., Zehavi, I., Contreras, S. & Norberg, P. The impact of assembly bias on the halo occupation in hydrodynamical simulations. Mon. Not. R. Astron. Soc. 480, 3978–3992 (2018).
Google Scholar
Habouzit, M. et al. Properties of simulated galaxies and supermassive black holes in cosmic voids. Mon. Not. R. Astron. Soc. 493, 899–921 (2020).
Google Scholar
Rosas-Guevara, Y., Tissera, P., Lagos, Cd. P., Paillas, E. & Padilla, N. Revealing the properties of void galaxies and their assembly using the EAGLE simulation. Mon. Not. R. Astron. Soc. 517, 712–731 (2022).
Google Scholar
Constantin, A., Hoyle, F. & Vogeley, M. S. Active galactic nuclei in void regions. Astrophys. J. 673, 715–729 (2008).
Google Scholar
Ceccarelli, L., Duplancic, F. & Garcia Lambas, D. The impact of void environment on AGN. Mon. Not. R. Astron. Soc. 509, 1805–1819 (2022).
Google Scholar
Amiri, A., Tavasoli, S. & De Zotti, G. Role of environment on nuclear activity. Astrophys. J. 874, 140 (2019).
Google Scholar
Kereš, D., Katz, N., Weinberg, D. H. & Davé, R. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005).
Google Scholar
Domínguez-Gómez, J. et al. CO-CAVITY pilot survey: molecular gas and star formation in void galaxies. Astron. Astrophys. 658, 124 (2022).
Google Scholar
Kenney, J. D. & Young, J. S. CO in H I-deficient Virgo cluster spiral galaxies. Astrophys. J. 301, 13 (1986).
Google Scholar
Sage, L. J., Weistrop, D., Cruzen, S. & Kompe, C. Molecular gas and star formation within galaxies in the Bootes Void. Astron. J. 114, 1753 (1997).
Google Scholar
Das, M., Saito, T., Iono, D., Honey, M. & Ramya, S. Detection of molecular gas in void galaxies: implications for star formation in isolated environments. Astrophys. J. 815, 40 (2015).
Google Scholar
Cortese, L. et al. The selective effect of environment on the atomic and molecular gas-to-dust ratio of nearby galaxies in the Herschel Reference Survey. Mon. Not. R. Astron. Soc. 459, 3574–3584 (2016).
Google Scholar
Grossi, M. et al. Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust. Astron. Astrophys. 590, 27 (2016).
Google Scholar
Ahumada, R. et al. The 16th data release of the Sloan Digital Sky Surveys: first release from the APOGEE-2 Southern Survey and full release of eBOSS spectra. ApJS 249, 3 (2020).
Google Scholar
Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D. & Fischer, J. L. Improving galaxy morphologies for SDSS with Deep Learning. Mon. Not. R. Astron. Soc. 476, 3661–3676 (2018).
Google Scholar