Strange IndiaStrange India


  • 1.

    Wong, J. L. & Wessel, G. M. Defending the zygote: search for the ancestral animal block to polyspermy. Curr. Top. Dev. Biol. 72, 1–151 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Burkart, A. D., Xiong, B., Baibakov, B., Jiménez-Movilla, M. & Dean, J. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 197, 37–44 (2012).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Vacquier, V. D., Tegner, M. J. & Epel, D. Protease activity establishes the block against polyspermy in sea urchin eggs. Nature 240, 352–353 (1972).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Liu, M. The biology and dynamics of mammalian cortical granules. Reprod. Biol. Endocrinol. 9, 149 (2011).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Johnson, M. A., Harper, J. F. & Palanivelu, R. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70, 809–837 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Dresselhaus, T., Sprunck, S. & Wessel, G. M. Fertilization mechanisms in flowering plants. Curr. Biol. 26, R125–R139 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Beale, K. M., Leydon, A. R. & Johnson, M. A. Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr. Biol. 22, 1090–1094 (2012).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Maruyama, D. et al. Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev. Cell 25, 317–323 (2013).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Zhang, J. et al. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat. Plants 3, 17079 (2017).

    Article 

    Google Scholar 

  • 10.

    Glöckle, B. et al. Pollen differentiation as well as pollen tube guidance and discharge are independent of the presence of gametes. Development 145, dev152645 (2018).

    Article 

    Google Scholar 

  • 11.

    Zhou, L. Z. & Dresselhaus, T. Friend or foe: signaling mechanisms during double fertilization in flowering seed plants. Curr. Top. Dev. Biol. 131, 453–496 (2019).

    Article 

    Google Scholar 

  • 12.

    Grossniklaus, U. Polyspermy produces tri-parental seeds in maize. Curr. Biol. 27, R1300–R1302 (2017).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Nakel, T. et al. Triparental plants provide direct evidence for polyspermy induced polyploidy. Nat. Commun. 8, 1033 (2017).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Márton, M. L., Cordts, S., Broadhvest, J. & Dresselhaus, T. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307, 573–576 (2005).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Takeuchi, H. & Higashiyama, T. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol. 10, e1001449 (2012).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Okuda, S. et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357–361 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Zhong, S. et al. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364, eaau9564 (2019).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Sandaklie-Nikolova, L., Palanivelu, R., King, E. J., Copenhaver, G. P. & Drews, G. N. Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol. 144, 1753–1762 (2007).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Duan, Q. et al. FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579, 561–566 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Maruyama, D. et al. Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161, 907–918 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Kasahara, R. D. et al. Fertilization recovery after defective sperm cell release in Arabidopsis. Curr. Biol. 22, 1084–1089 (2012).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Sprunck, S. et al. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338, 1093–1097 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Simões, I., Faro, R., Bur, D. & Faro, C. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance. J. Biol. Chem. 282, 31358–31365 (2007).

    Article 

    Google Scholar 

  • 24.

    Mori, T., Kuroiwa, H., Higashiyama, T. & Kuroiwa, T. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8, 64–71 (2006).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Mori, T., Igawa, T., Tamiya, G., Miyagishima, S. Y. & Berger, F. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis. Curr. Biol. 24, 170–175 (2014).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Steffen, J. G., Kang, I. H., Macfarlane, J. & Drews, G. N. Identification of genes expressed in the Arabidopsis female gametophyte. Plant J. 51, 281–292 (2007).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Bleckmann, A. & Dresselhaus, T. Whole mount RNA-FISH on ovules and developing seeds. Methods Mol. Biol. 1669, 159–171 (2017).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Zimmerberg, J. & Whitaker, M. Irreversible swelling of secretory granules during exocytosis caused by calcium. Nature 315, 581–584 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Antoine, A. F. et al. A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proc. Natl Acad. Sci. USA 97, 10643–10648 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Digonnet, C., Aldon, D., Leduc, N., Dumas, C. & Rougier, M. First evidence of a calcium transient in flowering plants at fertilization. Development 124, 2867–2874 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Denninger, P. et al. Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun. 5, 4645 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Hamamura, Y. et al. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat. Commun. 5, 4722 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Kranz, E., von Wiegen, P. & Lörz, H. Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J. 8, 9–23 (1995).

    Article 

    Google Scholar 

  • 34.

    Wu, J. J. et al. Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling during the maturation of Arabidopsis female gametes. Dev. Cell 23, 1043–1058 (2012).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Lampropoulos, A. et al. GreenGate—a novel, versatile, and efficient cloning system for plant transgenesis. PLoS ONE 8, e83043 (2013).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Wang, T. et al. A receptor heteromer mediates the male perception of female attractants in plants. Nature 531, 241–244 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Soares, A. et al. An atypical aspartic protease modulates lateral root development in Arabidopsis thaliana. J. Exp. Bot. 70, 2157–2171 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Zhao, P. et al. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Dev. Cell 49, 882–893 (2019).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *