Strange IndiaStrange India


  • Palot, M., Pearson, D. G., Stern, R. A., Stachel, T. & Harris, J. W. Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). Geochim. Cosmochim. Acta 139, 26–46 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stachel, T. Diamonds from the asthenosphere and the transition zone. Eur. J. Miner. 13, 883–892 (2001).

    Article 
    CAS 

    Google Scholar 

  • Walter, M. J. et al. Primary carbonatite melt from deeply subducted oceanic crust. Nature 454, 622–625 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Harte, B., Harris, J. W., Hutchison, M. T., Watt, G. R. & Wilding, M. C. in Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd (eds Fei, Y., Bertka, C. M. & Mysen, B. O.) 125–153 (The Geochemical Society, 1999).

  • Stachel, T., Harris, J. W., Brey, G. P. & Joswig, W. Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib. Mineral. Petrol. 140, 16–27 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smith, E. M. et al. Blue boron-bearing diamonds from Earth’s lower mantle. Nature 560, 84–87 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stachel, T., Harris, J. W., Aulbach, S. & Deines, P. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds. Contrib. Mineral. Petrol. 142, 465–475 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Regier, M. E. et al. The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds. Nature 585, 234–238 (2020).

    Article 
    CAS 

    Google Scholar 

  • Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ringwood, A. E. Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol. 90, 611–643 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brey, G. P., Bulatov, V., Girnis, A., Harris, J. W. & Stachel, T. Ferropericlase—a lower mantle phase in the upper mantle. Lithos 77, 655–663 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nestola, F. et al. New accurate elastic parameters for the forsterite-fayalite solid solution. Am. Mineral. 96, 1742–1747 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Poe, B. T., Romano, C., Nestola, F. & Smyth, J. R. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys. Earth Planet. In. 181, 103–111 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nestola, F. et al. First crystal structure determination of olivine in diamond: composition and implications for provenance in the Earth’s mantle. Earth Planet. Sci. Lett. 305, 249–255 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Angel, R. J., Alvaro, M. & Nestola, F. 40 years of mineral elasticity: a critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions. Phys. Chem. Mineral. 45, 95–113 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Angel, R. J., Alvaro, M., Nestola, F. & Mazzucchelli, M. L. Diamond thermoelastic properties and implications for determining the pressure of formation of diamond–inclusion systems. Russian Geol. Geophys. 56, 211–220 (2015).

    Article 

    Google Scholar 

  • Angel, R. J., Mazzucchelli, M. L., Alvaro, M. & Nestola, F. EosFit-Pinc: a simple GUI for host–inclusion elastic thermobarometry. Am. Mineral. 102, 1957–1960 (2017).

    Article 
    ADS 

    Google Scholar 

  • Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T. & Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Int. 183, 212–218 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hasterok, D. & Chapman, D. S. Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 307, 59–70 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cayzer, N. J., Odake, S., Harte, B. & Kagi, H. Plastic deformation of lower mantle diamonds by inclusion phase transformations. Eur. J. Mineral. 20, 333–339 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wood, B. J. Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth Planet. Sci. Lett. 174, 341–354 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Davies, R. M., Griffin, W. L., O’Reilly, S. Y. & Doyle, B. J. Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77, 39–55 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kaminsky, F. V. et al. Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Miner. Petrol. 140, 734–753 (2001).

  • Tappert, R., Stachel, T., Harris, J. W., Shimizu, N. & Brey, G. P. Mineral inclusions in diamonds from the Panda kimberlite, Slave province, Canada. Eur. J. Miner. 17, 423–440 (2005).

    Article 
    CAS 

    Google Scholar 

  • Hayman, P. C., Kopylova, M. G. & Kaminsky, F. V. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib. Miner. Petrol. 149, 430–445 (2005).

  • Regier, M. E. et al. An oxygen isotope test for the origin of Archean mantle roots. Geochemical Perspect. Lett. 9, 6–10 (2018).

    Article 

    Google Scholar 

  • Vance, J. A. & Dungan, M. A. Formation of peridotites by deserpentinization in the Darrington and Sultan areas, Cascade Mountains, Washington. Bull. Geol. Soc. Am. 88, 1497–1508 (1977).

    2.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0016-7606%281977%2988%3C1497%3AFOPBDI%3E2.0.CO%3B2″ aria-label=”Article reference 28″ data-doi=”10.1130/0016-7606(1977)88<1497:FOPBDI>2.0.CO;2″>Article 
    CAS 

    Google Scholar 

  • Kitamura, M., Shen, B., Banno, S. & Morimoto, N. Fine textures of laihunite, a nonstoichiometric distorted olivine-type mineral. Am. Mineral. 69, 154–160 (1984).

    CAS 

    Google Scholar 

  • Blondes, M. S., Brandon, M. T., Reiners, P. W., Page, F. Z. & Kita, N. T. Generation of forsteritic olivine (Fo99·8) by subsolidus oxidation in basaltic flows. J. Petrol. 53, 971–984 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shahar, A. et al. High-temperature Si isotope fractionation between iron metal and silicate. Geochim. Cosmochim. Acta 75, 7688–7697 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schmidt, M. W., Gao, C., Golubkova, A., Rohrbach, A. & Connolly, J. A. Natural moissanite (SiC) – a low temperature mineral formed from highly fractionated ultra-reducing COH-fluids. Prog. Earth Planet. Sci. 1, 27 (2014).

    Article 

    Google Scholar 

  • Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472, 209–212 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ryabchikov, I. D. & Kaminsky, F. V. Oxygen potential of diamond formation in the lower mantle. Geol. Ore Depos. 55, 1–12 (2013).

    Article 
    ADS 

    Google Scholar 

  • McCammon, C. A., Stachel, T. & Harris, J. W. Iron oxidation state in lower mantle mineral assemblages II. Inclusions in diamonds from Kankan, Guinea. Earth Planet. Sci. Lett. 222, 423–434 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Otsuka, K., Longo, M., McCammon, C. A. & Karato, S. Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: implications for redox conditions during diamond formation in the lower mantle. Earth Planet. Sci. Lett. 365, 7–16 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shirey, S. B., Wagner, L. S., Walter, M. J., Pearson, D. G. & van Keken, P. E. Slab transport of fluids to deep focus earthquake depths – thermal modeling constraints and evidence from diamonds. AGU Adv. 2, e2020AV000304 (2021).

    Article 
    ADS 

    Google Scholar 

  • Van der Hist, R., Engdahl, R., Spakman, W. & Nolet, G. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353, 37–43 (1991).

    Article 
    ADS 

    Google Scholar 

  • Billen, M. I. Deep slab seismicity limited by rate of deformation in the transition zone. Sci. Adv. 6, eaaz7692 (2020).

    Article 
    ADS 

    Google Scholar 

  • Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhu, F., Li, J., Liu, J., Dong, J. & Liu, Z. Metallic iron limits silicate hydration in Earth’s transition zone. Proc. Natl Acad. Sci. 116, 22526–22530 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Van der Meer, D. G., van Hinsbergen, D. J. J. & Spakman, W. Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309–448 (2018).

    Article 
    ADS 

    Google Scholar 

  • Harte, B. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Miner. Mag. 74, 189–215 (2010).

    Article 
    CAS 

    Google Scholar 

  • Moussallam, Y. et al. Mantle plumes are oxidised. Earth Planet. Sci. Lett. 527, 115798 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kaminsky, F. V. et al. Oxidation potential in the Earth’s lower mantle as recorded by ferropericlase inclusions in diamond. Earth Planet. Sci. Lett. 417, 49–56 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kiseeva, E. S. et al. Oxidized iron in garnets from the mantle transition zone. Nat. Geosci. 11, 144–147 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kawamoto, T. Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys. Earth Planet. Inter. 143, 387–395 (2004).

    Article 
    ADS 

    Google Scholar 

  • Wenz, M. D. et al. Fast identification of mineral inclusions in diamond at GSECARS using synchrotron X-ray microtomography, radiography and diffraction. J. Synchrotron Radiat. 26, 1763–1768 (2019).

    Article 
    CAS 

    Google Scholar 

  • Golubkova, A., Schmidt, M. W. & Connolly, J. A. D. Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation. Contrib. Mineral. Petrol. 171, 41 (2016).

  • Holland, T. J. B. & Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29, 333–383 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smith, E. M. et al. Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor. Sci. Adv. 7, eabe9773 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fichtner, C. E., Schmidt, M. W., Liebske, C., Bouvier, A. S. & Baumgartner, L. P. Carbon partitioning between metal and silicate melts during Earth accretion. Earth Planet. Sci. Lett. 554, 116659 (2021).

  • Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *