Strange IndiaStrange India


  • Miller, K. J. & Venditto, S. J. C. Multi-step planning in the brain. Curr. Opin. Behav. Sci. 38, 29–39 (2021).

    Google Scholar 

  • Mattar, M. G. & Lengyel, M. Planning in the brain. Neuron 110, 914–934 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • de Groot, A. D. Het Denken van den Sckaken (Noord-Holland. Uitgev. Maatschappij, 1946).

  • Charness, N. in Toward a General Theory of Expertise: Prospects and Limits (eds Anders, E. K. & Smith, J.) 39–63 (Cambridge University Press, 1991).

  • Holding, D. H. Theories of chess skill. Psychol. Res. 54, 10–16 (1992).

    Google Scholar 

  • Gobet, F. A pattern-recognition theory of search in expert problem solving. Think. Reasoning 3, 291–313 (1997).

    Google Scholar 

  • Campitelli, G. & Gobet, F. Adaptive expert decision making: Skilled chess players search more and deeper. J. Int. Comput. Games Assoc. 27, 209–216 (2004).

  • Linhares, A., Freitas, A. E. T., Mendes, A. & Silva, J. S. Entanglement of perception and reasoning in the combinatorial game of chess: differential errors of strategic reconstruction. Cogn. Syst. Res. 13, 72–86 (2012).

    Google Scholar 

  • Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huys, Q. J. et al. Bonsai trees in your head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 8, e1002410 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chase, W. G. & Simon, H. A. Perception in chess. Cogn. Psychol. 4, 55–81 (1973).

    Google Scholar 

  • Van Harreveld, F., Wagenmakers, E.-J. & Van Der Maas, H. L. The effects of time pressure on chess skill: an investigation into fast and slow processes underlying expert performance. Psychol. Res. 71, 591–597 (2007).

    PubMed 

    Google Scholar 

  • Sheridan, H. & Reingold, E. M. Chess players’ eye movements reveal rapid recognition of complex visual patterns: evidence from a chess-related visual search task. J. Vis. 17, 4 (2017).

    PubMed 

    Google Scholar 

  • Gobet, F. & Simon, H. A. Expert chess memory: revisiting the chunking hypothesis. Memory 6, 225–255 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Bilalić, M., Langner, R., Erb, M. & Grodd, W. Mechanisms and neural basis of object and pattern recognition: a study with chess experts. J. Exp. Psychol. Gen. 139, 728–742 (2010).

    PubMed 

    Google Scholar 

  • Saariluoma, P. Visuospatial and articulatory interference in chess players’ information intake. Appl. Cogn. Psychol. 6, 77–89 (1992).

    Google Scholar 

  • Holding, D. H. The Psychology of Chess Skill (Lawrence Erlbaum, 1985).

  • Holding, D. H. Evaluation factors in human tree search. Am. J. Psychol. 102, 103–108 (1989).

    Google Scholar 

  • Gobet, F. & Jansen, P. Towards a chess program based on a model of human memory. Adv. Comput. Chess 7, 35–60 (1994).

    Google Scholar 

  • Holding, D. H. Counting backward during chess move choice. Bull. Psychon. Soc. 27, 421–424 (1989).

    Google Scholar 

  • Charness, N. in Complex Information Processing 203–228 (Psychology Press, 2013).

  • Huys, Q. J. et al. Interplay of approximate planning strategies. Proc. Natl Acad. Sci. USA 112, 3098–3103 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snider, J., Lee, D., Poizner, H. & Gepshtein, S. Prospective optimization with limited resources. PLoS Comput. Biol. 11, e1004501 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolling, N., Scholl, J., Chekroud, A., Trier, H. A. & Rushworth, M. F. Prospection, perseverance, and insight in sequential behavior. Neuron 99, 1069–1082 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Redish, A. D. Vicarious trial and error. Nat. Rev. Neurosci. 17, 147–159 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pezzulo, G., Donnarumma, F., Maisto, D. & Stoianov, I. Planning at decision time and in the background during spatial navigation. Curr. Opin. Behav. Sci. 29, 69–76 (2019).

    Google Scholar 

  • Miller, K. J., Botvinick, M. M. & Brody, C. D. Dorsal hippocampus contributes to model-based planning. Nat. Neurosci. 20, 1269 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Groman, S. M., Rich, K. M., Smith, N. J., Lee, D. & Taylor, J. R. Chronic exposure to methamphetamine disrupts reinforcement-based decision making in rats. Neuropsychopharmacology 43, 770–780 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Akam, T. et al. The anterior cingulate cortex predicts future states to mediate model-based action selection. Neuron 109, 149–163 (2020).

  • Beck, J. Combinatorial Games: Tic-Tac-Toe Theory Vol. 114 (Cambridge Univ. Press, 2008).

  • van Opheusden, B. & Ma, W. J. Tasks for aligning human and machine planning. Curr. Opin. Behav. Sci. 29, 127–133 (2019).

    Google Scholar 

  • Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving (Addison-Wesley Longman Publishing Co., Inc., 1984).

  • Bonet, B. & Geffner, H. Planning as heuristic search. Artif. Int. 129, 5–33 (2001).

  • Dechter, R. & Pearl, J. Generalized best-first search strategies and the optimality of A*. J. ACM 32, 505–536 (1985).

    MathSciNet 
    MATH 

    Google Scholar 

  • Callaway, F. et al. Rational use of cognitive resources in human planning. Nat. Hum. Behav. 6, 1112–1125 (2022).

    PubMed 

    Google Scholar 

  • Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • van Opheusden, B., Acerbi, L. & Ma, W. J. Unbiased and efficient log-likelihood estimation with inverse binomial sampling. PLOS Comput. Biol. 16, e1008483 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Acerbi, L. & Ma, W. J. Practical Bayesian optimization for model fitting with Bayesian adaptive direct search. Proceedings of the 31st International Conference on Neural Information Processing Systems 1834–1844 (2017).

  • Turing, A. Computing machinery and intelligence. Mind 59, 433–460 (1950).

    MathSciNet 

    Google Scholar 

  • Elo, A. E. The Rating of Chessplayers, Past and Present (Arco Pub., 1978).

  • Chabris, C. F. & Hearst, E. S. Visualization, pattern recognition, and forward search: Effects of playing speed and sight of the position on grandmaster chess errors. Cogn. Sci. 27, 637–648 (2003).

    Google Scholar 

  • Calderwood, R., Klein, G. A. & Crandall, B. W. Time pressure, skill, and move quality in chess. Am. J. Psychol. 101, 481–493 (1988).

    Google Scholar 

  • Krusche, M. J., Schulz, E., Guez, A. & Speekenbrink, M. Adaptive planning in human search. Preprint at BioRxiv https://doi.org/10.1101/268938 (2018).

  • Huang, J., Velarde, I., Ma, W. J. & Baldassano, C. Schema-based predictive eye movements support sequential memory encoding. eLife 12, e82599 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L. & Efros, A. A. Investigating human priors for playing video games. In Proc. Intennational Conference of Machine Learning (ICML) (2018).

  • Charness, N., Tuffiash, M., Krampe, R., Reingold, E. & Vasyukova, E. The role of deliberate practice in chess expertise. Appl. Cogn. Psychol. 19, 151–165 (2005).

    Google Scholar 

  • Brown, N. & Sandholm, T. Superhuman AI for multiplayer poker. Science 365, 885–890 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Meta Fundamental AI Research Diplomacy Team (FAIR) et al.Human-level play in the game of diplomacy by combining language models with strategic reasoning. Science 378, 1067–1074 (2022).

    ADS 
    MathSciNet 

    Google Scholar 

  • Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362, 1140–1144 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hamrick, J. B. et al. Combining q-learning and search with amortized value estimates. In Proc. International Conference on Learning Representations (ICLR) (2020).

  • Ma, I., Phaneuf, C., van Opheusden, B., Ma, W. J. & Hartley, C. The component processes of complex planning follow distinct developmental trajectories. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/d62rw (2022).

  • Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cornelissen, F. W., Peters, E. M. & Palmer, J. The eyelink toolbox: eye tracking with MATLAB and the psychophysics toolbox. Behav. Res. Methods Instr. Comput. 34, 613–617 (2002).

    Google Scholar 

  • Zermelo, E. Die berechnung der turnier-ergebnisse als ein maximumproblem der wahrscheinlichkeitsrechnung. Math. Z. 29, 436–460 (1929).

    MathSciNet 
    MATH 

    Google Scholar 

  • Hunter, D. R. MM algorithms for generalized Bradley-Terry models. Ann. Stat. 32, 384–406 (2004).

    MathSciNet 
    MATH 

    Google Scholar 

  • Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction Vol. 1 (MIT Press, 1998).

  • Sutton, R. S., McAllester, D. A., Singh, S. P. & Mansour, Y. in Advances in Neural Information Processing Systems 1057–1063 (2000).

  • Dawson, R. Unbiased Tests, Unbiased Estimators, and Randomized Similar Regions. PhD thesis, Harvard Univ. (1953).

  • de Groot, M. H. Unbiased sequential estimation for binomial populations. Ann. Math. Stat. 30, 80–101 (1959).

    MathSciNet 

    Google Scholar 

  • Huyer, W. & Neumaier, A. Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–355 (1999).

    MathSciNet 
    MATH 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *