Strange India All Strange Things About India and world


  • 1.

    Butov, L. V., Zrenner, A., Abstreiter, G., Böhm, G. & Weimann, G. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. Phys. Rev. Lett. 73, 304–307 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Zhu, X., Littlewood, P. B., Hybertsen, M. S. & Rice, T. M. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett. 74, 1633–1636 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Kleemans, N. A. J. M. et al. Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea. Nat. Phys. 6, 534–538 (2010).

    CAS 

    Google Scholar 

  • 5.

    Byrnes, T., Recher, P. & Yamamoto, Y. Mott transitions of exciton polaritons and indirect excitons in a periodic potential. Phys. Rev. B 81, 205312 (2010).

    Google Scholar 

  • 6.

    Biolatti, E., Iotti, R. C., Zanardi, P. & Rossi, F. Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett. 85, 5647–5650 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Chen, P., Piermarocchi, C. & Sham, L. J. Control of exciton dynamics in nanodots for quantum operations. Phys. Rev. Lett. 87, 067401 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    De Rinaldis, S. et al. Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing. Phys. Rev. B 65, 081309(R) (2002).

    Google Scholar 

  • 9.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS 

    Google Scholar 

  • 10.

    Ghosh, S. & Liew, T. C. H. Quantum computing with exciton-polariton condensates. npj Quant. Inf. 6, 16 (2020).

    Google Scholar 

  • 11.

    Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    High, A. A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Lai, C. W., Zoch, J., Gossard, A. C. & Chemla, D. S. Phase diagram of degenerate exciton systems. Science 303, 503–506 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Remeika, M., Fogler, M. M., Butov, L. V., Hanson, M. & Gossard, A. C. Two-dimensional electrostatic lattices for indirect excitons. Appl. Phys. Lett. 100, 061103 (2012).

    Google Scholar 

  • 15.

    Remeika, M. et al. Measurement of exciton correlations using electrostatic lattices. Phys. Rev. B 92, 115311 (2015).

    Google Scholar 

  • 16.

    Leonard, J. R. et al. Pancharatnam-Berry phase in condensate of indirect excitons. Nat. Commun. 9, 2158 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Smolka, S. et al. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 346, 332–335 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Ivanov, A. L., Haug, H. & Keldysh, L. V. Optics of excitonic molecules in semiconductors and semiconductor microstructures. Phys. Rep. 296, 237–336 (1998).

    CAS 

    Google Scholar 

  • 20.

    Van Tuan, D., Yang, M. & Dery, H. Coulomb interaction in monolayer transition-metal dichalcogenides. Phys. Rev. B 98, 125308 (2018).

    Google Scholar 

  • 21.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    PubMed 

    Google Scholar 

  • 22.

    He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Stier, A. V., McCreary, K. M., Jonker, B. T., Kono, J. & Crooker, S. A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 tesla. Nat. Commun. 7, 10643 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

    Google Scholar 

  • 26.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    PubMed 

    Google Scholar 

  • 27.

    Xiao, D. et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    PubMed 

    Google Scholar 

  • 28.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS 

    Google Scholar 

  • 31.

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).

    MathSciNet 
    CAS 

    Google Scholar 

  • 35.

    Peimyoo, N. et al. Engineering dielectric screening for potential-well arrays of excitons in 2D materials. ACS Appl. Mater. Interfaces 12, 55134–55140 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    CAS 

    Google Scholar 

  • 37.

    Efimkin, D. K. & MacDonald, A. H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 95, 035417 (2017).

    Google Scholar 

  • 38.

    Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. J. Exp. Theor. Phys. 29, 658–661 (1979).

    Google Scholar 

  • 39.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Stier, A. V., Wilson, N. P., Clark, G., Xu, X. & Crooker, S. A. Probing the influence of dielectric environment on excitons in monolayer WSe2: insight from high magnetic fields. Nano Lett. 16, 7054–7060 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Stier, A. V. et al. Magnetooptics of exciton Rydberg states in a monolayer semiconductor. Phys. Rev. Lett. 120, 057405 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Novoselov, K. S. et al. Electric field in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Kim, K. et al. Van der Waals Heterostructures with High Accuracy Rotational Alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Kinoshita, K. et al. Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate. npj 2D Mater. Appl. 3, 22 (2019).

    Google Scholar 

  • 48.

    Moon, P. & Koshino, M. Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys. Rev. B 85, 195458 (2012).

    Google Scholar 

  • 49.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). Demonstration of quantum-dot-like PL from moiré IXs.

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019). Demonstration of intralayer moiré excitons and moiré minibands through reflectance spectroscopy.

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019). Demonstration and analysis of resonant interlayer hybridization in twisted TMD heterobilayers.

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020). Realization of Hubbard-model correlated antiferromagnetism in the moiré pattern of a TMD double layer.

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020). Realization of generalized Wigner crystals in TMD heterobilayers.

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020). Demonstration of hybrid inter/intralayer excitons and moiré excitons in a TMD homobilayer.

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Wu, F. C., Xue, F. & Macdonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).

    Google Scholar 

  • 63.

    Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Calman, E. V. et al. Indirect excitons in van der Waals heterostructures at room temperature. Nat. Commun. 9, 1895 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

    CAS 

    Google Scholar 

  • 67.

    Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. II. Dislocation pile-ups, threading dislocations, slip lines and cracks. J. Cryst. Growth 29, 273–280 (1975).

    CAS 

    Google Scholar 

  • 68.

    Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers. J. Cryst. Growth 32, 265–273 (1976).

    CAS 

    Google Scholar 

  • 69.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). Demonstration of IX PL and dynamics in a TMD heterobilayer.

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Latini, S., Winther, K. T., Olsen, T. & Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938–945 (2016).

    Google Scholar 

  • 72.

    Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019). Demonstration of Stark effect and doping control of IX species, their spectra and their dynamics.

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Liu, G. B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 17, 638–643 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016). Study of many-body interactions of valley-polarized IX populations.

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Jin, C. et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 360, 893–896 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Zhu, H. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 2, 52–57 (2020).

    Google Scholar 

  • 81.

    Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).

    CAS 

    Google Scholar 

  • 82.

    Zhang, L. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 11, 5888 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Luican, A. et al. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Yu, H. et al. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017). Calculation of the properties of moiré excitons in TMD heterobilayers, and derivation of quantum-optical properties of moiré excitons.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Woods, C. R. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS 

    Google Scholar 

  • 88.

    Flores, M., Cisternas, E., Correa, J. D. & Vargas, P. Moiré patterns on STM images of graphite induced by rotations of surface and subsurface layers. Chem. Phys. 423, 49–54 (2013).

    CAS 

    Google Scholar 

  • 89.

    Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).

    CAS 

    Google Scholar 

  • 90.

    Lee, K. et al. Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures. Sci. Adv. 6, eabd1919 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 92.

    Van Der Donck, M. & Peeters, F. M. Interlayer excitons in transition metal dichalcogenide heterostructures. Phys. Rev. B 98, 115104 (2018).

    Google Scholar 

  • 93.

    Jung, J., Raoux, A., Qiao, Z. & Macdonald, A. H. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys. Rev. B 89, 205414 (2014).

    Google Scholar 

  • 94.

    Guinea, F. & Walet, N. R. Continuum models for twisted bilayer graphene: effect of lattice deformation and hopping parameters. Phys. Rev. B 99, 205134 (2019).

    CAS 

    Google Scholar 

  • 95.

    Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 96.

    Yu, H., Wang, Y., Tong, Q., Xu, X. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

    PubMed 

    Google Scholar 

  • 97.

    Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, 8526–8537 (2020). Demonstration of single photon emission from moiré excitons and electric-field tunability of moiré excitons.

    Google Scholar 

  • 98.

    Mucha-Kruczyński, M., Wallbank, J. R. & Fal’Ko, V. I. Moiré miniband features in the angle-resolved photoemission spectra of graphene/hBN heterostructures. Phys. Rev. B 93, 085409 (2016).

    Google Scholar 

  • 99.

    Xie, S. et al. Direct observation of distinct minibands in moiré superlattices. Preprint at https://arxiv.org/abs/2010.07806 (2020).

  • 100.

    Brem, S. et al. Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale 12, 11088–11094 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 101.

    Wallbank, J. R. et al. Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nat. Phys. 15, 32–36 (2019).

    CAS 

    Google Scholar 

  • 102.

    Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton-exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).

    Google Scholar 

  • 103.

    Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019). Study of a degenerate gas of electrically pumped IX through electroluminescence.

    CAS 
    PubMed 

    Google Scholar 

  • 104.

    Sigl, L. et al. Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack. Phys. Rev. Res. 2, 042044 (2020).

    CAS 

    Google Scholar 

  • 105.

    Zhu, Q., Tu, M. W. Y., Tong, Q. & Yao, W. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv. 5, eaau6120 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 107.

    Liu, Y. et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 5, eaav4506 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Latini, S., Ronca, E., De Giovannini, U., Hübener, H. & Rubio, A. Cavity control of excitons in two-dimensional materials. Nano Lett. 19, 3473–3479 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 110.

    Dagotto, E. & Riera, J. Superconductivity in the two-dimensional t-J model. Phys. Rev. B 46, 12084(R) (1992).

    Google Scholar 

  • 111.

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 112.

    Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 113.

    Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    CAS 

    Google Scholar 

  • 114.

    Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).

    Google Scholar 

  • 115.

    Böning, J., Filinov, A. & Bonitz, M. Crystallization of an exciton superfluid. Phys. Rev. B 84, 75130 (2011).

    Google Scholar 

  • 116.

    Suris, R. A. Gas–crystal phase transition in a 2D dipolar exciton system. J. Exp. Theor. Phys. 122, 602–607 (2016).

    CAS 

    Google Scholar 

  • 117.

    Padhi, B., Chitra, R. & Phillips, P. W. Generalized Wigner crystallization in moiré materials. Phys. Rev. B 103, 125146 (2021).

    CAS 

    Google Scholar 

  • 118.

    Jin, C. et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat. Mater. 20, 940–944 (2021)

    CAS 
    PubMed 

    Google Scholar 

  • 119.

    Wang, F. et al. Imaging generalized Wigner crystal states in a WSe2/WS2 moiré superlattice. Preprint at https://doi.org/10.21203/rs.3.rs-390032/v1 (2021).

  • 120.

    Slobodkin, Y. et al. Quantum phase transitions of trilayer excitons in atomically thin heterostructures. Phys. Rev. Lett. 125, 255301 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 121.

    Tong, Q., Chen, M., Xiao, F., Yu, H. & Yao, W. Interferences of electrostatic moiré potentials and bichromatic superlattices of electrons and excitons in transition metal dichalcogenides. 2D Mater. 8, 025007 (2021).

    CAS 

    Google Scholar 

  • 122.

    Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    CAS 
    MATH 

    Google Scholar 

  • 123.

    Yu, H. & Yao, W. Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moiré superlattices. Phys. Rev. X 11, 021042 (2021).

    Google Scholar 

  • 124.

    Rezai, M., Wrachtrup, J. & Gerhardt, I. Polarization-entangled photon pairs from a single molecule. Optica 6, 34–40 (2019).

    CAS 

    Google Scholar 

  • 125.

    Lezama, I. G. et al. Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 15, 2336–2342 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 126.

    Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018). Realization of in situ control of twist angle in a vdW heterostructure.

    CAS 

    Google Scholar 

  • 127.

    Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 128.

    Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 129.

    Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 130.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 131.

    Xia, J. et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat. Phys. 17, 92–98 (2020).

    Google Scholar 

  • 132.

    Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Google Scholar 

  • 134.

    Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    CAS 

    Google Scholar 

  • 135.

    Zhao, P., Xiao, C. & Yao, W. Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate. npj 2D Mater. Appl. 5, 38 (2021).

    CAS 

    Google Scholar 

  • 136.

    Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 137.

    Enaldiev, V. V., Ferreira, F., Magorrian, S. J. & Fal’ko, V. I. Piezoelectric networks and ferroelectric moiré superlattice domains in twistronic WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater. 8, 025030 (2021).

    CAS 

    Google Scholar 

  • 138.

    Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 139.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 140.

    Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 141.

    Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the Moiré of van der Waals 2D Magnets. Nano Lett. 18, 7194–7199 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 142.

    Xu, Y. et al. Emergence of a noncollinear magnetic state in twisted bilayer CrI3. Preprint at https://arxiv.org/abs/2103.09850 (2021).

  • 143.

    Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).

    Google Scholar 

  • 144.

    Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    CAS 

    Google Scholar 

  • 145.

    Lee, K. et al. Magnetic order and symmetry in the 2d semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 146.

    Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. https://doi.org/10.1038/s41563-021-01070-8 (2021).

  • 147.

    Wang, C. et al. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 64, 293–300 (2019).

    CAS 

    Google Scholar 

  • 148.

    Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 149.

    Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 150.

    Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS 

    Google Scholar 

  • 151.

    Bloch, I. Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005).

    Google Scholar 

  • 152.

    Ismail, K., Chu, W., Yen, A., Antoniadis, D. A. & Smith, H. I. Negative transconductance and negative differential resistance in a grid-gate modulation-doped field-effect transistor. Appl. Phys. Lett. 54, 460–462 (1989).

    Google Scholar 

  • 153.

    Forsythe, C. et al. Band structure engineering of 2D materials using patterned dielectric superlattices. Nat. Nanotechnol. 13, 566–571 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 154.

    Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 155.

    Shanks, D. N. et al. Nanoscale trapping of interlayer excitons in a 2D semiconductor heterostructure. Nano Lett. 21, 5641–5647 (2021).

    CAS 
    PubMed 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *