Strange India All Strange Things About India and world


  • Kato, T. Perturbation Theory for Linear Operators (Springer, 2013).

  • Berry, M. V. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039–1047 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Miri, M.-A. & Alu, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Parto, M., Liu, Y. G. N., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics 10, 403 (2021).

    Article 

    Google Scholar 

  • Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    ADS 
    Article 

    Google Scholar 

  • Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, W., Ozdemir, S. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, P.-Y. et al. Generalized parity–time symmetry condition for enhanced sensor telemetry. Nat. Electron. 1, 297–304 (2018).

    Article 

    Google Scholar 

  • Dong, Z., Li, Z., Yang, F., Qiu, C.-W. & Ho, J. S. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335–342 (2019).

    Article 

    Google Scholar 

  • Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

    ADS 
    Article 

    Google Scholar 

  • Kononchuk, R. & Kottos, T. Orientation-sensed optomechanical acelerometers based on exceptional points. Phys. Rev. Res. 2, 023252 (2020).

    CAS 
    Article 

    Google Scholar 

  • Park, J.-H. et al. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys. 16, 462–468 (2020).

    CAS 
    Article 

    Google Scholar 

  • Xiao, Z., Li, H., Kottos, T. & Alú, A. Enhanced sensing and nondegrated thermal noise performance based on \({\mathscr{P}}{\mathscr{T}}\)-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett. 123, 213901 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, M. et al. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett. 123, 180501 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    ADS 
    Article 

    Google Scholar 

  • Wiersig, J. Prospects and fundamental limits in exceptional point-based sensing. Nat. Commun. 11, 2454 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wang, H., Lai, Y.-H., Yuan, Z., Suh, M.-G. & Vahala, K. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun. 11, 1610 (2020).

    ADS 
    Article 

    Google Scholar 

  • Langbein, W. No exceptional precision of exceptional-point sensors. Phys. Rev. A 98, 023805 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wiersig, J. Robustness of exceptional point-based sensors against parametric noise: the role of Hamiltonian and Liouvillian degeneracies. Phys. Rev. A 101, 053846 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Schindler, J. et al. PT-symmetric electronics. J. Phys. A 45, 444029 (2012).

    Article 

    Google Scholar 

  • Bender, C. M. & Böttcher, S. Real spectra in non-Hermitian Hamiltonians having \({\mathscr{P}}{\mathscr{T}}\) symmetry. Phys. Rev. Lett. 80, 5243 (1998).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Fraden, J. in Handbook of Modern Sensors, Chapter 2 (Springer, 2016).

  • Xiao, G. & Bock, W. J. Photonic Sensing: Principles and Applications for Safety and Security Monitoring (Wiley Series in Microwave and Optical Engineering, Wiley, 2012).

  • Bao, M. Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes (Elsevier, 2000).

  • De Brito Andre, P. S. & Humberto, V. Accelerometers: Principles, Structure and Applications (Nova Science, 2013).

  • Wen, H. et al. Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/\(\sqrt{{\rm{Hz}}}\)} resolution. J. Light. Technol 31, 11 (2013).

    Google Scholar 

  • Skolianos, G., Aurora, A., Bernier, M. & Digonnet, M. J. Slow light in Bragg gratings and its applications. J. Phys. D 49, 463001 (2016).

    Article 

    Google Scholar 

  • Geng, Q. & Zhu, K.-D. Discrepancy between transmission spectrum splitting and eigenvalue splitting: a reexamination on exceptional point-based sensors. Photon. Res. 9, 1645–1649 (2021).

    Article 

    Google Scholar 

  • Sweeney, W. R., Hsu, C. W., Rotter, S. & Stone, A. D. Perfectly absorbing exceptional points and chiral absorbers. Phys. Rev. Lett. 122, 093901 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sweeney, W. R., Hsu, C. W. & Stone, A. D. Theory of reflectionless scattering modes. Phys. Rev. A 102, 063511 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Yoo, G., Sim, H.-S. & Schomerus, H. Quantum noise and mode nonorthogonality in non-Hermitian \({\mathscr{P}}{\mathscr{T}}\) -symmetric optical resonators. Phys. Rev. A 84, 063833 (2011).

    ADS 
    Article 

    Google Scholar 

  • Krause, A. G., Winger, M. T., Blasius, D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Li, Y. L. & Barker, P. F. Characterization and testing of a micro-g whispering gallery mode optomechanical accelerometer. J. Light. Technol. 36, 3919–3926 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys. 4, 555–560 (2008).

    CAS 
    Article 

    Google Scholar 

  • El-Sheimy, N., Hou, H. & Niu, X. Analysis and modeling of inertial sensors using Allan variance. IEEE Trans. Instrum. Meas. 57, 140–149 (2008).

    Article 

    Google Scholar 

  • Quinchia, A. G., Falco, G., Falletti, E., Dovis, F. & Ferrer, C. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors 13, 9549–9588 (2013).

    ADS 
    Article 

    Google Scholar 

  • Duggen, R., Mann, S. & Alú, A. Limitations of sensing at an exceptional point. ACS Photon. 9, 1554–1566 (2022).



  • Source link

    Leave a Reply

    Your email address will not be published.