Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Google Scholar
Haldane, F. D. M. Geometrical description of the fractional quantum Hall effect. Phys. Rev. Lett. 107, 116801 (2011).
Google Scholar
Yang, B., Hu, Z.-X., Papić, Z. & Haldane, F. D. M. Model wave functions for the collective modes and the magnetoroton theory of the fractional quantum hall effect. Phys. Rev. Lett. 108, 256807 (2012).
Google Scholar
Son, D. T. Newton-Cartan geometry and the quantum Hall effect. Preprint at https://arxiv.org/abs/1306.0638 (2013).
Golkar, S., Nguyen, D. X. & Son, D. T. Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect. J. High Energy Phys. 2016, 21 (2016).
Liou, S.-F., Haldane, F. D. M., Yang, K. & Rezayi, E. H. Chiral gravitons in fractional quantum hall liquids. Phys. Rev. Lett. 123, 146801 (2019).
Google Scholar
Nguyen, D. X. & Son, D. T. Probing the spin structure of the fractional quantum Hall magnetoroton with polarized Raman scattering. Phys. Rev. Res. 3, 023040 (2021).
Google Scholar
Nguyen, D. X., Haldane, F. D. M., Rezayi, E. H., Son, D. T. & Yang, K. Multiple magnetorotons and spectral sum rules in fractional quantum hall systems. Phys. Rev. Lett. 128, 246402 (2022).
Google Scholar
Girvin, S. M., MacDonald, A. H. & Platzman, P. M. Collective-excitation gap in the fractional quantum Hall effect. Phys. Rev. Lett. 54, 581–583 (1985).
Google Scholar
Pinczuk, A., Dennis, B. S., Pfeiffer, L. N. & West, K. Observation of collective excitations in the fractional quantum Hall effect. Phys. Rev. Lett. 70, 3983–3986 (1993).
Google Scholar
Yang, K. Geometry of compressible and incompressible quantum Hall states: application to anisotropic composite-fermion liquids. Phys. Rev. B 88, 241105 (2013).
Google Scholar
Maciejko, J., Hsu, B., Kivelson, S. A., Park, Y. & Sondhi, S. L. Field theory of the quantum Hall nematic transition. Phys. Rev. B 88, 125137 (2013).
Google Scholar
You, Y., Cho, G. Y. & Fradkin, E. Theory of nematic fractional quantum hall states. Phys. Rev. X 4, 041050 (2014).
Luo, X., Wu, Y.-S. & Yu, Y. Noncommutative Chern–Simons theory and exotic geometry emerging from the lowest Landau level. Phys. Rev. D 93, 125005 (2016).
Google Scholar
Johri, S., Papić, Z., Schmitteckert, P., Bhatt, R. N. & Haldane, F. D. M. Probing the geometry of the Laughlin state. New J. Phys. 18, 025011 (2016).
Google Scholar
Gromov, A. & Son, D. T. Bimetric theory of fractional quantum Hall states. Phys. Rev. X 7, 041032 (2017).
Yang, B. Microscopic theory for nematic fractional quantum Hall effect. Phys. Rev. Res. 2, 033362 (2020).
Google Scholar
Haldane, F. D. M., Rezayi, E. H. & Yang, K. Graviton chirality and topological order in the half-filled landau level. Phys. Rev. B 104, L121106 (2021).
Google Scholar
Balram, A. C., Liu, Z., Gromov, A. & Papić, Z. Very-high-energy collective states of partons in fractional quantum hall liquids. Phys. Rev. X 12, 021008 (2022).
Google Scholar
Wang, Y. & Yang, B. Geometric fluctuation of conformal Hilbert spaces and multiple graviton modes in fractional quantum Hall effect. Nat. Commun. 14, 2317 (2023).
Google Scholar
Kirmani, A. et al. Probing geometric excitations of fractional quantum hall states on quantum computers. Phys. Rev. Lett. 129, 056801 (2022).
Google Scholar
Farjami, A., Horner, M. D., Self, C. N., Papić, Z. & Pachos, J. K. Geometric description of the Kitaev honeycomb lattice model. Phys. Rev. B 101, 245116 (2020).
Google Scholar
Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).
Google Scholar
Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).
Google Scholar
Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).
Google Scholar
Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).
Davies, H. D. M., Harris, J. C., Ryan, J. F. & Turberfield, A. J. Spin and charge density excitations and the collapse of the fractional quantum Hall state at v = 1/3. Phys. Rev. Lett. 78, 4095–4098 (1997).
Google Scholar
Kang, M., Pinczuk, A., Dennis, B. S., Pfeiffer, L. N. & West, K. W. Observation of multiple magnetorotons in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 2637–2640 (2001).
Google Scholar
Scarola, V. W., Park, K. & Jain, J. K. Rotons of composite fermions: comparison between theory and experiment. Phys. Rev. B 61, 13064–13072 (2000).
Google Scholar
Platzman, P. M. & He, S. Resonant Raman scattering from mobile electrons in the fractional quantum Hall regime. Phys. Rev. B 49, 13674–13679 (1994).
Google Scholar
Fierz, M. & Pauli, W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. London, Ser. A 173, 211–232 (1939).
Google Scholar
Bergshoeff, E. A., Hohm, O. & Townsend, P. K. Massive gravity in three dimensions. Phys. Rev. Lett. 102, 201301 (2009).
Google Scholar
Bergshoeff, E. A., Rosseel, J. & Townsend, P. K. Gravity and the spin-2 planar Schrödinger equation. Phys. Rev. Lett. 120, 141601 (2018).
Google Scholar
Kang, M. et al. Inelastic light scattering by gap excitations of fractional quantum Hall states at 1/3 ≤ v ≤ 2/3. Phys. Rev. Lett. 84, 546–549 (2000).
Google Scholar
Wurstbauer, U., West, K. W., Pfeiffer, L. N. & Pinczuk, A. Resonant inelastic light scattering investigation of low-lying gapped excitations in the quantum fluid at v = 5/2. Phys. Rev. Lett. 110, 026801 (2013).
Google Scholar
Du, L. et al. Observation of new plasmons in the fractional quantum Hall effect: interplay of topological and nematic orders. Sci. Adv. 5, eaav3407 (2019).
Google Scholar
Liu, Z. et al. Domain textures in the fractional quantum Hall effect. Phys. Rev. Lett. 128, 017401 (2022).
Google Scholar
Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312–7343 (1993).
Google Scholar
Simon, S. H. & Halperin, B. I. Finite-wave-vector electromagnetic response of fractional quantized Hall states. Phys. Rev. B 48, 17368–17387 (1993).
Google Scholar
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Google Scholar
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Google Scholar
Léonard, J. et al. Realization of a fractional quantum Hall state with ultracold atoms. Nature 619, 495–499 (2023).
Google Scholar
Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).
Google Scholar
Hirjibehedin, C. F. et al. Splitting of long-wavelength modes of the fractional quantum Hall liquid at v = 1/3. Phys. Rev. Lett. 95, 066803 (2005).
Google Scholar
Rhone, T. D. et al. Higher-energy composite fermion levels in the fractional quantum Hall effect. Phys. Rev. Lett. 106, 096803 (2011).
Google Scholar
Gallais, Y., Yan, J., Pinczuk, A., Pfeiffer, L. N. & West, K. W. Soft spin wave near v = 1: evidence for a magnetic instability in Skyrmion Systems. Phys. Rev. Lett. 100, 086806 (2008).
Google Scholar
Zhang, F. C. & Sarma, S. D. Excitation gap in the fractional quantum Hall effect: finite layer thickness corrections. Phys. Rev. B 33, 2903–2906 (1986).
Google Scholar
Park, K. & Jain, J. K. Two-roton bound state in the fractional quantum Hall effect. Phys. Rev. Lett. 84, 5576–5579 (2000).
Google Scholar
Ghosh, T. K. & Baskaran, G. Modeling two-roton bound state formation in the fractional quantum Hall system. Phys. Rev. Lett. 87, 186803 (2001).
Google Scholar
Goldberg, B. B. et al. Optical transmission spectroscopy of the two-dimensional electron gas in GaAs in the quantum hall regime. Phys. Rev. B 38, 10131–10134 (1988).
Google Scholar
Hirjibehedin, C. F. et al. Resonant enhancement of inelastic light scattering in the fractional quantum Hall regime at v = 1/3. Solid State Commun. 127, 799–803 (2003).
Google Scholar