Strange India All Strange Things About India and world


  • Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Hackman, D. A., Farah, M. J. & Meaney, M. J. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat. Rev. Neurosci. 11, 651–659 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • May, A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn. Sci. 15, 475–482 (2011).

    PubMed 

    Google Scholar 

  • Van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 1, 191–198 (2000).

    PubMed 

    Google Scholar 

  • Freund, J. et al. Emergence of individuality in genetically identical mice. Science 340, 756–759 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Clemenson, G. D., Deng, W. & Gage, F. H. Environmental enrichment and neurogenesis: from mice to humans. Curr. Opin. Behav. Sci. 4, 56–62 (2015).

    Google Scholar 

  • Kardan, O. et al. Neighborhood greenspace and health in a large urban center. Sci. Rep. 5, 11610 (2015).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Dadvand, P. et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl Acad. Sci. USA 112, 7937–7942 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Engemann, K. et al. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl Acad. Sci. USA 116, 5188–5193 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Berman, M. G., Stier, A. J. & Akcelik, G. N. Environmental neuroscience. Am. Psychol. 74, 1039–1052 (2019).

    PubMed 

    Google Scholar 

  • Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Lederbogen, F. et al. City living and urban upbringing affect neural social stress processing in humans. Nature 474, 498–501 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Kühn, S. et al. In search of features that constitute an “enriched environment” in humans: Associations between geographical properties and brain structure. Sci. Rep. 7, 11920 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Carey, I. M. et al. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open 8, e022404 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stier, A. et al. Rethinking depression in cities: evidence and theory for lower rates in larger urban areas. Preprint at https://doi.org/10.1101/2020.08.20.20179036 (2020).

  • Coutrot, A. et al. Global determinants of navigation ability. Curr. Biol. 28, 2861–2866 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Malanchini, M. et al. Evidence for a unitary structure of spatial cognition beyond general intelligence. npj Sci. Learn. 5, 9 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spiers, H. J. & Maguire, E. A. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31, 1826–1840 (2006).

    PubMed 

    Google Scholar 

  • Maguire, E. A., Woollett, K. & Spiers, H. J. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16, 1091–1101 (2006).

    PubMed 

    Google Scholar 

  • Xu, J. et al. Global urbanicity is associated with brain and behaviour in young people. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01204-7 (2021).

  • Coutrot, A. et al. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS ONE 14, e0213272 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spiers, H. J., Coutrot, A. & Hornberger, M. Explaining world-wide variation in navigation ability from millions of people: citizen science project Sea Hero Quest. Top. Cogn. Sci. https://doi.org/10.1111/tops.12590 (2021).

  • Sutherland, R. J. & Hamilton, D. A. Rodent spatial navigation: at the crossroads of cognition and movement. Neurosci. Biobehav. Rev. 28, 687–697 (2004).

    PubMed 

    Google Scholar 

  • Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boeing, G. OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017).

    Google Scholar 

  • Coughlan, G. et al. Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proc. Natl Acad. Sci. USA 116, 9285–9292 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klencklen, G., Després, O. & Dufour, A. What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Res. Rev. 11, 123–135 (2012).

    PubMed 

    Google Scholar 

  • Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A. & Wolbers, T. The aging navigational system. Neuron 95, 1019–1035 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nazareth, A., Huang, X., Voyer, D. & Newcombe, N. A meta-analysis of sex differences in human navigation skills. Psychon. Bull. Rev. 26, 1503–1528 (2019).

    PubMed 

    Google Scholar 

  • Ritchie, S. J. & Tucker-Drob, E. M. How much does education improve intelligence? A meta-analysis. Psychol. Sci. 29, 1358–1369 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulrich, S., Grill, E. & Flanagin, V. L. Who gets lost and why: a representative cross-sectional survey on sociodemographic and vestibular determinants of wayfinding strategies. PLoS ONE 14, e0204781 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fuchs, F. et al. Exposure to an enriched environment up to middle age allows preservation of spatial memory capabilities in old age. Behav. Brain Res. 299, 1–5 (2016).

    PubMed 

    Google Scholar 

  • Lynch, K. The Image of the City (The MIT Press, 1960).

  • Marshall, S. Streets and Patterns (Spon Press, 2005).

  • Watts, A., Ferdous, F., Diaz Moore, K. & Burns, J. M. Neighborhood integration and connectivity predict cognitive performance and decline. Gerontol. Geriatr. Med. https://doi.org/10.1177/2333721415599141 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koohsari, M. J. et al. Cognitive function of elderly persons in Japanese neighborhoods: the role of street layout. Am. J. Alzheimers Dis. Other Demen. 34, 381–389 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bongiorno, C. et al. Vector-based pedestrian navigation in cities. Nat. Comput. Sci. 1, 678–685 (2021).

    Google Scholar 

  • Boeing, G. A multi-scale analysis of 27,000 urban street networks: every US city, town, urbanized area, and Zillow neighborhood. Environ. Plann. B Urban Anal. City Sci. 47, 590–608 (2018).

    Google Scholar 

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 

    Google Scholar 

  • Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    MathSciNet 
    ADS 

    Google Scholar 

  • Gudmundsson, A. & Mohajeri, N. Entropy and order in urban street networks. Sci. Rep. 3, 3324 (2013).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Batty, M., Morphet, R., Masucci, P. & Stanilov, K. Entropy, complexity, and spatial information. J. Geogr. Syst. 16, 363–385 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boeing, G. Urban spatial order: street network orientation, configuration, and entropy. Appl. Netw. Sci. 67, 1–20 (2019).

    Google Scholar 

  • McNamee, D., Wolpert, D. & Lengyel, M. Efficient state-space modularization for planning: theory, behavioral and neural signatures. In Advances in Neural Information Processing Systems 29 (NIPS 2016) (eds Lee. D. et al.) 4511–4519 (Curran Associates, 2016).

  • Wiener, J. M., Schnee, A. & Mallot, H. A. Use and interaction of navigation strategies in regionalized environments. J. Env. Psychol. 24, 475–493 (2004).

    Google Scholar 

  • Brunyé, T. T. et al. Strategies for selecting routes through real-world environments: Relative topography, initial route straightness, and cardinal direction. PLoS ONE 10, e0124404 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ekstrom, A. D., Spiers, H. J., Bohbot, V. D. & Rosenbaum, R. S. Human Spatial Navigation (Princeton University Press, 2018).

  • Salon, D. Heterogeneity in the relationship between the built environment and driving: focus on neighborhood type and travel purpose. Res. Transp. Econ. 52, 34–45 (2015).

    Google Scholar 

  • Lenormand, M., Bassolas, A. & Ramasco, J. J. Systematic comparison of trip distribution laws and models. J. Transp. Geogr. 51, 158–169 (2016).

    Google Scholar 

  • Nazareth, A., Weisberg, S. M., Margulis, K. & Newcombe, N. S. Charting the development of cognitive mapping. J. Exp. Child Psychol. 170, 86–106 (2018).

    PubMed 

    Google Scholar 

  • Montello, D. R. A conceptual model of the cognitive processing of environmental distance information. In Spatial Information Theory: 9th International Conference, COSIT 2009 (eds. Hornsby, K. S. et al.) 1–17 (Springer, 2009).

  • Masucci, A. P., Arcaute, E., Hatna, E., Stanilov, K. & Batty, M. On the problem of boundaries and scaling for urban street networks. J. R. Soc. Interface 12, 20150763 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Giacomin, D. J. & Levinson, D. M. Road network circuity in metropolitan areas. Environ. Plann. B Plann. Des. 42, 1040–1053 (2015).

    Google Scholar 

  • Jiang, B. & Claramunt, C. Topological analysis of urban street networks. Environ. Plann. B Plann. Des. 31, 151–162 (2004).

    Google Scholar 

  • Porta, S. et al. Street centrality and densities of retail and services in Bologna, Italy. Environ. Plann. B Plann. Des. 36, 450–465 (2009).

    Google Scholar 

  • Javadi, A.-H. et al. Hippocampal and prefrontal processing of network topology to simulate the future. Nat. Commun. 8, 14652 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Jiang, B. & Claramunt, C. A structural approach to the model generalization of an urban street network. GeoInformatica 8, 157–171 (2004).

    Google Scholar 

  • Filomena, G., Verstegen, J. A. & Manley, E. A computational approach to ‘The Image of the City’. Cities 89, 14–25 (2019).

    Google Scholar 

  • Mou, W., McNamara, T. P., Valiquette, C. M. & Rump, B. Allocentric and egocentric updating of spatial memories. J. Exp. Psychol. Learn. Mem. Cogn. 30, 142 (2004).

    PubMed 

    Google Scholar 

  • Tversky, B. Distortions in memory for maps. Cogn. Psychol. 13, 407–433 (1981).

    Google Scholar 

  • Sadalla, E. K. & Magel, S. G. The perception of traversed distance. Environ. Behav. 12, 65–79 (1980).

    Google Scholar 

  • Spiers, H. J. & Maguire, E. A. A navigational guidance system in the human brain. Hippocampus 17, 618–626 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Howard, L. R. et al. The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr. Biol. 24, 1331–1340 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spiers, H. J. & Barry, C. Neural systems supporting navigation. Curr. Opin. Behav. Sci. 1, 47–55 (2015).

    Google Scholar 

  • Douglas, D. H. & Peucker, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10, 112–122 (1973).

    Google Scholar 

  • Hentschke, H. & Stüttgen, M. C. Computation of measures of effect size for neuroscience data sets. Eur. J. Neurosci. 34, 1887–1894 (2011).

    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *