Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).
Google Scholar
Hackman, D. A., Farah, M. J. & Meaney, M. J. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat. Rev. Neurosci. 11, 651–659 (2010).
Google Scholar
May, A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn. Sci. 15, 475–482 (2011).
Google Scholar
Van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 1, 191–198 (2000).
Google Scholar
Freund, J. et al. Emergence of individuality in genetically identical mice. Science 340, 756–759 (2013).
Google Scholar
Clemenson, G. D., Deng, W. & Gage, F. H. Environmental enrichment and neurogenesis: from mice to humans. Curr. Opin. Behav. Sci. 4, 56–62 (2015).
Kardan, O. et al. Neighborhood greenspace and health in a large urban center. Sci. Rep. 5, 11610 (2015).
Google Scholar
Dadvand, P. et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl Acad. Sci. USA 112, 7937–7942 (2015).
Google Scholar
Engemann, K. et al. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl Acad. Sci. USA 116, 5188–5193 (2019).
Google Scholar
Berman, M. G., Stier, A. J. & Akcelik, G. N. Environmental neuroscience. Am. Psychol. 74, 1039–1052 (2019).
Google Scholar
Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).
Google Scholar
Lederbogen, F. et al. City living and urban upbringing affect neural social stress processing in humans. Nature 474, 498–501 (2011).
Google Scholar
Kühn, S. et al. In search of features that constitute an “enriched environment” in humans: Associations between geographical properties and brain structure. Sci. Rep. 7, 11920 (2017).
Google Scholar
Carey, I. M. et al. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open 8, e022404 (2018).
Google Scholar
Stier, A. et al. Rethinking depression in cities: evidence and theory for lower rates in larger urban areas. Preprint at https://doi.org/10.1101/2020.08.20.20179036 (2020).
Coutrot, A. et al. Global determinants of navigation ability. Curr. Biol. 28, 2861–2866 (2018).
Google Scholar
Malanchini, M. et al. Evidence for a unitary structure of spatial cognition beyond general intelligence. npj Sci. Learn. 5, 9 (2020).
Google Scholar
Spiers, H. J. & Maguire, E. A. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31, 1826–1840 (2006).
Google Scholar
Maguire, E. A., Woollett, K. & Spiers, H. J. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16, 1091–1101 (2006).
Google Scholar
Xu, J. et al. Global urbanicity is associated with brain and behaviour in young people. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01204-7 (2021).
Coutrot, A. et al. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS ONE 14, e0213272 (2019).
Google Scholar
Spiers, H. J., Coutrot, A. & Hornberger, M. Explaining world-wide variation in navigation ability from millions of people: citizen science project Sea Hero Quest. Top. Cogn. Sci. https://doi.org/10.1111/tops.12590 (2021).
Sutherland, R. J. & Hamilton, D. A. Rodent spatial navigation: at the crossroads of cognition and movement. Neurosci. Biobehav. Rev. 28, 687–697 (2004).
Google Scholar
Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504 (2017).
Google Scholar
Boeing, G. OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017).
Coughlan, G. et al. Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proc. Natl Acad. Sci. USA 116, 9285–9292 (2019).
Google Scholar
Klencklen, G., Després, O. & Dufour, A. What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Res. Rev. 11, 123–135 (2012).
Google Scholar
Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A. & Wolbers, T. The aging navigational system. Neuron 95, 1019–1035 (2017).
Google Scholar
Nazareth, A., Huang, X., Voyer, D. & Newcombe, N. A meta-analysis of sex differences in human navigation skills. Psychon. Bull. Rev. 26, 1503–1528 (2019).
Google Scholar
Ritchie, S. J. & Tucker-Drob, E. M. How much does education improve intelligence? A meta-analysis. Psychol. Sci. 29, 1358–1369 (2018).
Google Scholar
Ulrich, S., Grill, E. & Flanagin, V. L. Who gets lost and why: a representative cross-sectional survey on sociodemographic and vestibular determinants of wayfinding strategies. PLoS ONE 14, e0204781 (2019).
Google Scholar
Fuchs, F. et al. Exposure to an enriched environment up to middle age allows preservation of spatial memory capabilities in old age. Behav. Brain Res. 299, 1–5 (2016).
Google Scholar
Lynch, K. The Image of the City (The MIT Press, 1960).
Marshall, S. Streets and Patterns (Spon Press, 2005).
Watts, A., Ferdous, F., Diaz Moore, K. & Burns, J. M. Neighborhood integration and connectivity predict cognitive performance and decline. Gerontol. Geriatr. Med. https://doi.org/10.1177/2333721415599141 (2015).
Google Scholar
Koohsari, M. J. et al. Cognitive function of elderly persons in Japanese neighborhoods: the role of street layout. Am. J. Alzheimers Dis. Other Demen. 34, 381–389 (2019).
Google Scholar
Bongiorno, C. et al. Vector-based pedestrian navigation in cities. Nat. Comput. Sci. 1, 678–685 (2021).
Boeing, G. A multi-scale analysis of 27,000 urban street networks: every US city, town, urbanized area, and Zillow neighborhood. Environ. Plann. B Urban Anal. City Sci. 47, 590–608 (2018).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
Google Scholar
Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).
Google Scholar
Gudmundsson, A. & Mohajeri, N. Entropy and order in urban street networks. Sci. Rep. 3, 3324 (2013).
Google Scholar
Batty, M., Morphet, R., Masucci, P. & Stanilov, K. Entropy, complexity, and spatial information. J. Geogr. Syst. 16, 363–385 (2014).
Google Scholar
Boeing, G. Urban spatial order: street network orientation, configuration, and entropy. Appl. Netw. Sci. 67, 1–20 (2019).
McNamee, D., Wolpert, D. & Lengyel, M. Efficient state-space modularization for planning: theory, behavioral and neural signatures. In Advances in Neural Information Processing Systems 29 (NIPS 2016) (eds Lee. D. et al.) 4511–4519 (Curran Associates, 2016).
Wiener, J. M., Schnee, A. & Mallot, H. A. Use and interaction of navigation strategies in regionalized environments. J. Env. Psychol. 24, 475–493 (2004).
Brunyé, T. T. et al. Strategies for selecting routes through real-world environments: Relative topography, initial route straightness, and cardinal direction. PLoS ONE 10, e0124404 (2015).
Google Scholar
Ekstrom, A. D., Spiers, H. J., Bohbot, V. D. & Rosenbaum, R. S. Human Spatial Navigation (Princeton University Press, 2018).
Salon, D. Heterogeneity in the relationship between the built environment and driving: focus on neighborhood type and travel purpose. Res. Transp. Econ. 52, 34–45 (2015).
Lenormand, M., Bassolas, A. & Ramasco, J. J. Systematic comparison of trip distribution laws and models. J. Transp. Geogr. 51, 158–169 (2016).
Nazareth, A., Weisberg, S. M., Margulis, K. & Newcombe, N. S. Charting the development of cognitive mapping. J. Exp. Child Psychol. 170, 86–106 (2018).
Google Scholar
Montello, D. R. A conceptual model of the cognitive processing of environmental distance information. In Spatial Information Theory: 9th International Conference, COSIT 2009 (eds. Hornsby, K. S. et al.) 1–17 (Springer, 2009).
Masucci, A. P., Arcaute, E., Hatna, E., Stanilov, K. & Batty, M. On the problem of boundaries and scaling for urban street networks. J. R. Soc. Interface 12, 20150763 (2015).
Google Scholar
Giacomin, D. J. & Levinson, D. M. Road network circuity in metropolitan areas. Environ. Plann. B Plann. Des. 42, 1040–1053 (2015).
Jiang, B. & Claramunt, C. Topological analysis of urban street networks. Environ. Plann. B Plann. Des. 31, 151–162 (2004).
Porta, S. et al. Street centrality and densities of retail and services in Bologna, Italy. Environ. Plann. B Plann. Des. 36, 450–465 (2009).
Javadi, A.-H. et al. Hippocampal and prefrontal processing of network topology to simulate the future. Nat. Commun. 8, 14652 (2017).
Google Scholar
Jiang, B. & Claramunt, C. A structural approach to the model generalization of an urban street network. GeoInformatica 8, 157–171 (2004).
Filomena, G., Verstegen, J. A. & Manley, E. A computational approach to ‘The Image of the City’. Cities 89, 14–25 (2019).
Mou, W., McNamara, T. P., Valiquette, C. M. & Rump, B. Allocentric and egocentric updating of spatial memories. J. Exp. Psychol. Learn. Mem. Cogn. 30, 142 (2004).
Google Scholar
Tversky, B. Distortions in memory for maps. Cogn. Psychol. 13, 407–433 (1981).
Sadalla, E. K. & Magel, S. G. The perception of traversed distance. Environ. Behav. 12, 65–79 (1980).
Spiers, H. J. & Maguire, E. A. A navigational guidance system in the human brain. Hippocampus 17, 618–626 (2007).
Google Scholar
Howard, L. R. et al. The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr. Biol. 24, 1331–1340 (2014).
Google Scholar
Spiers, H. J. & Barry, C. Neural systems supporting navigation. Curr. Opin. Behav. Sci. 1, 47–55 (2015).
Douglas, D. H. & Peucker, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10, 112–122 (1973).
Hentschke, H. & Stüttgen, M. C. Computation of measures of effect size for neuroscience data sets. Eur. J. Neurosci. 34, 1887–1894 (2011).
Google Scholar