Armin, A. et al. A history and perspective of non‐fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570 (2021).
Google Scholar
Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).
Google Scholar
Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).
Google Scholar
Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).
Google Scholar
Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).
Google Scholar
Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).
Google Scholar
Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M. & Bulović, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005).
Google Scholar
Adachi, C. & Sandanayaka, A. S. D. The leap from organic light-emitting diodes to organic semiconductor laser diodes. CCS Chem. 2, 1203–1216 (2020).
Google Scholar
Jiang, Y. et al. Organic solid-state lasers: a materials view and future development. Chem. Soc. Rev. 49, 5885–5944 (2020).
Google Scholar
Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390–406 (2012).
Samuel, I. D. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).
Google Scholar
Yoshida, K. et al. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 11, 1171 (2020).
Google Scholar
Hide, F. et al. Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833–1836 (1996).
Google Scholar
Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).
Google Scholar
Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).
Google Scholar
Ou, Q., Peng, Q. & Shuai, Z. Computational screen-out strategy for electrically pumped organic laser materials. Nat. Commun. 11, 4485 (2020).
Google Scholar
Wu, J.-J., Wang, X.-D. & Liao, L.-S. Advances in energy‐level systems of organic lasers. Laser Photonics Rev. 16, 2200366 (2022).
Google Scholar
Karl, M. et al. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018).
Google Scholar
Schneider, D. et al. Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85, 1886–1888 (2004).
Google Scholar
Gärtner, C., Karnutsch, C., Lemmer, U. & Pflumm, C. The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007).
Google Scholar
Zhang, Q., Tao, W., Huang, J., Xia, R. & Cabanillas-Gonzalez, J. Toward electrically pumped organic lasers: a review and outlook on material developments and resonator architectures. Adv. Photonics Res. 2, 2000155 (2021).
Redecker, M., Bradley, D. D. C., Inbasekaran, M. & Woo, E. P. Nondispersive hole transport in an electroluminescent polyfluorene. Appl. Phys. Lett. 73, 1565–1567 (1998).
Google Scholar
Wang, K. & Zhao, Y. S. Pursuing electrically pumped lasing with organic semiconductors. Chem 7, 3221–3231 (2021).
Google Scholar
Sandanayaka, A. S. D. et al. Toward continuous-wave operation of organic semiconductor lasers. Sci. Adv. 3, e1602570 (2017).
Google Scholar
Sandanayaka, A. S. D. et al. Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 12, 061010 (2019).
Google Scholar
Yang, Y., Turnbull, G. A. & Samuel, I. D. W. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett. 92, 163306 (2008).
Google Scholar
Hide, F., Kozodoy, P., DenBaars, S. P. & Heeger, A. J. White light from InGaN/conjugated polymer hybrid light-emitting diodes. Appl. Phys. Lett. 70, 2664–2666 (1997).
Google Scholar
Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002).
Google Scholar
Martins, E. R. et al. Low-threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Adv. Opt. Mater. 1, 563–566 (2013).
Keum, C. et al. A substrateless, flexible, and water-resistant organic light-emitting diode. Nat. Commun. 11, 6250 (2020).
Google Scholar
Bencheikh, F., Sandanayaka, A. S. D., Fukunaga, T., Matsushima, T. & Adachi, C. Origin of external quantum efficiency roll-off in 4,4′-bis[(N-carbazole)styryl]biphenyl (BSBCz)-based inverted organic light emitting diode under high pulsed electrical excitation. J. Appl. Phys. 126, 185501 (2019).
Google Scholar
Inoue, M. Suppression of Exciton Quenching in Organic Semiconductor Devices. PhD thesis, Kyushu Univ. (2016).
Herrnsdorf, J. et al. Micro-LED pumped polymer laser: a discussion of future pump sources for organic lasers. Laser Photonics Rev. 7, 1065–1078 (2013).
Google Scholar
Liu, X. et al. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer. Opt. Express 21, 27697–27706 (2013).
Google Scholar
Vithanage, D. A. et al. Polymer colour converter with very high modulation bandwidth for visible light communications. J. Mater. Chem. C 5, 8916–8920 (2017).
Tsiminis, G. et al. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode. Adv. Mater. 25, 2826–2830 (2013).
Google Scholar
Huang, X., Qu, Y., Fan, D., Kim, J. & Forrest, S. R. Ultrathin, lightweight and flexible organic light-emitting devices with a high light outcoupling efficiency. Org. Electron. 69, 297–300 (2019).
Google Scholar
Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362–364 (1997).
Google Scholar
Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nat. Photonics 3, 546–549 (2009).
Google Scholar
Heliotis, G. et al. Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14, 91–97 (2004).
Google Scholar
Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P. & Giebink, N. C. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics 11, 784–788 (2017).
Google Scholar
Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).
Google Scholar
Kim, H. et al. Optically pumped lasing from hybrid perovskite light‐emitting diodes. Adv. Opt. Mater. 8, 1901297 (2019).
Wallikewitz, B. H., de la Rosa, M., Kremer, J. H.-W. M., Hertel, D. & Meerholz, K. A lasing organic light-emitting diode. Adv. Mater. 22, 531–534 (2010).
Google Scholar
Cho, C. et al. Electrical pumping of perovskite diodes: toward stimulated emission. Adv. Sci. 8, e2101663 (2021).
Leyden, M. R. et al. Distributed feedback lasers and light-emitting diodes using 1-naphthylmethylamnonium low-dimensional perovskite. ACS Photonics 6, 460–466 (2019).
Google Scholar
Li, Y. et al. Low threshold, high Q-factor optically pumped organic lasers and exciton dynamics in OLEDs under high current density: singlet–triplet annihilation effect and toward electrical injection lasing. J. Phys. Chem. C 126, 16025–16033 (2022).
Google Scholar
Shukla, A. et al. Light amplification and efficient electroluminescence from a solution-processable diketopyrrolopyrrole derivative via triplet-to-singlet upconversion. Adv. Funct. Mater. 31, 2009817 (2021).
Google Scholar
Schwab, T. et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Adv. Opt. Mater. 1, 707–713 (2013).
Glaser, J. High power nanosecond pulse laser driver using an GaN FET. In PCIM Europe, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management 1-8 (IEEE, 2018).
Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012).
Google Scholar
Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998).
Google Scholar
Nowy, S., Krummacher, B. C., Frischeisen, J., Reinke, N. A. & Brütting, W. Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency. J. Appl. Phys. 104, 123109 (2008).
Google Scholar
Zhang, Y. & Forrest, S. R. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes. Phys. Rev. Lett. 108, 267404 (2012).
Google Scholar
Braun, D., Moses, D., Zhang, C. & Heeger, A. J. Nanosecond transient electroluminescence from polymer light-emitting-diodes. Appl. Phys. Lett. 61, 3092–3094 (1992).
Braun, D. & Heeger, A. J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58, 1982–1984 (1991).
Google Scholar
Chayet, H., Pogreb, R. & Davidov, D. Transient UV electroluminescence from poly(p-phenylenevinylene) conjugated polymer induced by strong voltage pulses. Phys. Rev. B 56, R12702–R12705 (1997).
Google Scholar
Lidzey, D. G., Bradley, D. D. C., Alvarado, S. F. & Seidler, P. F. Electroluminescence in polymer films. Nature 386, 135 (1997).
Google Scholar
Harrison, N. T., Tessler, N., Moss, C. J., Pichler, K. & Friend, R. H. Peak current density and brightness from poly(p-phenylenevinylene) based light-emitting diodes. Opt. Mater. 9, 178–182 (1998).
Google Scholar
Tessler, N., Harrison, N. T. & Friend, R. H. High peak brightness polymer light-emitting diodes. Adv. Mater. 10, 64–68 (1998).
Google Scholar
Campbell, I. H., Smith, D. L., Neef, C. J. & Ferraris, J. P. Charge transport in polymer light-emitting diodes at high current density. Appl. Phys. Lett. 75, 841–843 (1999).
Google Scholar
Kozlov, V. G., Burrows, P. E., Parthasarathy, G. & Forrest, S. R. Optical properties of molecular organic semiconductor thin films under intense electrical excitation. Appl. Phys. Lett. 74, 1057–1059 (1999).
Google Scholar
Tang, C. W., Vanslyke, S. A. & Chen, C. H. Electroluminescence of doped organic thin films. J. Appl. Phys. 65, 3610–3616 (1989).
Google Scholar
Pinner, D. J., Tessler, N. & Friend, R. H. Moving the recombination zone in two layer polymer LEDs using high voltage pulses. Synth. Met. 102, 1108–1109 (1999).
Google Scholar
Wilkinson, C. I. et al. Enhanced performance of pulse driven small area polyfluorene light emitting diodes. Appl. Phys. Lett. 79, 171–173 (2001).
Google Scholar
Wallikewitz, B. H., Kabra, D., Gélinas, S. & Friend, R. H. Triplet dynamics in fluorescent polymer light-emitting diodes. Phys. Rev. B 85, 045209 (2012).
Google Scholar
Yokoyama, W., Sasabe, H. & Adachi, C. Carrier injection and transport of steady-state high current density exceeding 1000 A/cm2 in organic thin films. Jpn J. Appl. Phys. 42, L1353 (2003).
Google Scholar
Wei, B., Ichikawa, M., Furukawa, K., Koyama, T. & Taniguchi, Y. High peak luminance of molecularly dye-doped organic light-emitting diodes under intense voltage pulses. J. Appl. Phys. 98, 044506 (2005).
Google Scholar
Ichikawa, M. et al. Gain-narrowing characteristics of fluorescent organic molecules with symmetrical or asymmetrical structures in a neat thin-film optical waveguide. J. Photochem. Photobiol. A Chem. 158, 219–221 (2003).
Google Scholar
Nakanotani, H., Oyamada, T., Kawamura, Y., Sasabe, H. & Adachi, C. Injection and transport of high current density over 1000 A/cm2 in organic light emitting diodes under pulse excitation. Jpn J. Appl. Phys. 44, 3659 (2005).
Google Scholar
Van Slyke, S. A., Chen, C. H. & Tang, C. W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 69, 2160–2162 (1996).
Google Scholar
Nakanotani, H., Sasabe, H. & Adachi, C. Low lasing threshold in organic distributed feedback solid state lasers using bisstyrylbenzene derivative as active material. Proc. SPIE. 5937, 59370W (2005).
Yamamoto, H., Kasajima, H., Yokoyama, W., Sasabe, H. & Adachi, C. Extremely-high-density carrier injection and transport over 12000A/cm2 into organic thin films. Appl. Phys. Lett. 86, 083502 (2005).
Google Scholar
Wei, B. et al. Organic solid laser pumped by an organic light-emitting diode. Opt. Express 14, 9436–9443 (2006).
Google Scholar
Matsushima, T. & Adachi, C. High-current injection and transport on order of kA/cm2 in organic light-emitting diodes having mixed organic/organic heterojunction interfaces. Jpn J. Appl. Phys. 46, L861 (2007).
Google Scholar
Matsushima, T. & Adachi, C. Observation of extremely high current densities on order of MA/cm2 in copper phthalocyanine thin-film devices with submicron active areas. Jpn J. Appl. Phys. 46, L1179 (2007).
Google Scholar
Giebink, N. C. & Forrest, S. R. Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes. Phy. Rev. B 77, 235215 (2008).
Google Scholar
Rabe, T. et al. Highly sensitive determination of the polaron-induced optical absorption of organic charge-transport materials. Phys. Rev. Lett. 102, 137401 (2009).
Google Scholar
Setoguchi, Y. & Adachi, C. Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers. J. Appl. Phys. 108, 064516 (2010).
Google Scholar
Inoue, M., Goushi, K., Endo, K., Nomura, H. & Adachi, C. Reduced amplified spontaneous emission threshold in organic semiconductor laser structure with relaxed roll-off characteristics under high current densities. J. Lumin. 143, 754–758 (2013).
Google Scholar
Kasemann, D., Brückner, R., Fröb, H. & Leo, K. Organic light-emitting diodes under high currents explored by transient electroluminescence on the nanosecond scale. Phys. Rev. B 84, 115208 (2011).
Google Scholar
Kajii, H., Kojima, T. & Ohmori, Y. Multilayer polyfluorene-based light-emitting diodes for frequency response up to 100 MHz. IEICE Trans. Electron. E94-C, 190–192 (2011).
Google Scholar
Fischer, A. et al. Self-heating effects in organic semiconductor crossbar structures with small active area. Org. Electron. 13, 2461–2468 (2012).
Google Scholar
Katsouras, I. et al. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field. Org. Electron. 14, 1591–1596 (2013).
Google Scholar
Zhang, Y. Excited State Interactions and Management in Organic Light Emitting Diodes. PhD thesis. Univ. Michigan (2014).
Sun, Y. et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006).
Google Scholar
Hayashi, K. et al. Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015).
Google Scholar
Wong, K.-T. et al. Ter(9,9-diarylfluorene)s: highly efficient blue emitter with promising electrochemical and thermal stability. J. Am. Chem. Soc. 124, 11576–11577 (2002).
Google Scholar
Yoshida, K., Nakanotani, H. & Adachi, C. Effect of Joule heating on transient current and electroluminescence in p-i-n organic light-emitting diodes under pulsed voltage operation. Org. Electron. 31, 287–294 (2016).
Google Scholar
Yoshida, K., Matsushima, T., Nakanotani, H. & Adachi, C. Quantification of temperature rise in unipolar organic conductors during short voltage-pulse excitation using electrical testing methods. Org. Electron. 31, 191–197 (2016).
Google Scholar
Yoshida, K. et al. Joule heat-induced breakdown of organic thin-film devices under pulse operation. J. Appl. Phys. 121, 195503 (2017).
Google Scholar
Zeng, L. et al. Electrical and optical impulse response of high-speed micro-OLEDs under ultrashort pulse excitation. IEEE Trans. Electron Devices 64, 2942–2948 (2017).
Google Scholar
Slowik, I. et al. Novel organic light-emitting diode design for future lasing applications. Org. Electron. 48, 132–137 (2017).
Google Scholar
Meerheim, R. et al. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J. Appl. Phys. 104, 014510 (2008).
Google Scholar
Chime, A. C. et al. Electrical modelling and design of ultra-fast micro-OLED with coplanar wave-guided electrodes in ON-OFF regime. Org. Electron. 56, 284–290 (2018).
Google Scholar
Ahmad, V. et al. High-speed OLEDs and area-emitting light-emitting transistors from a tetracyclic lactim semiconducting polymer. Adv. Opt. Mater. 6, 1800768 (2018).
Mamada, M., Fukunaga, T., Bencheikh, F., Sandanayaka, A. S. D. & Adachi, C. Low amplified spontaneous emission threshold from organic dyes based on bis-stilbene. Adv. Funct. Mater. 28, 1802130 (2018).
Chime, A. C. et al. Analysis of optical and electrical responses of µ-OLED with metallized ITO coplanar waveguide electrodes submitted to nanosecond electrical pulses. IEEE Trans. Electron Devices 66, 2282–2289 (2019).
Google Scholar
Ahmad, V. et al. Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing. Nat. Commun. 11, 4310 (2020).
Google Scholar
Burns, S., MacLeod, J., Do, T. T., Sonar, P. & Yambem, S. D. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs. Sci. Rep. 7, 40805 (2017).
Google Scholar
Ruan, S.-B. et al. A spirofluorene-end-capped bis-stilbene derivative with a low amplified spontaneous emission threshold and balanced hole and electron mobilities. Opt. Mater. 100, 109636 (2020).
Google Scholar
Mai, V. T. N. et al. Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singlet–triplet annihilation in optical and electrical excitation. Nat. Commun. 11, 5623 (2020).
Google Scholar
Ouirimi, A. et al. Threshold estimation of an organic laser diode using a rate-equation model validated experimentally with a microcavity OLED submitted to nanosecond electrical pulses. Org. Electron. 97, 106190 (2021).
Google Scholar
Shukla, A. et al. Low light amplification threshold and reduced efficiency roll-off in thick emissive layer OLEDs from a diketopyrrolopyrrole derivative. Macromol. Rapid Commun. 43, 2200115 (2022).
Google Scholar
Shukla, A. et al. Controlling triplet–triplet upconversion and singlet-triplet annihilation in organic light-emitting diodes for injection lasing. Commun. Mater. 3, 27 (2022).
Google Scholar
Lenstra, D. et al. Ultra-short optical pulse generation in micro OLEDs and the perspective of lasing. J. Opt. 24, 034007 (2022).
Google Scholar
Yoshida, K. et al. Electrically driven organic laser using integrated OLED pumping (dataset). University of St Andrews Research Portal. https://doi.org/10.17630/1c8b9610-0da3-4f20-ae02-2af032d80070 (2023).