Strange IndiaStrange India


  • Armin, A. et al. A history and perspective of non‐fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570 (2021).

    CAS 

    Google Scholar 

  • Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M. & Bulović, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Adachi, C. & Sandanayaka, A. S. D. The leap from organic light-emitting diodes to organic semiconductor laser diodes. CCS Chem. 2, 1203–1216 (2020).

    CAS 

    Google Scholar 

  • Jiang, Y. et al. Organic solid-state lasers: a materials view and future development. Chem. Soc. Rev. 49, 5885–5944 (2020).

    CAS 

    Google Scholar 

  • Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390–406 (2012).

    Google Scholar 

  • Samuel, I. D. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Yoshida, K. et al. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 11, 1171 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hide, F. et al. Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833–1836 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    ADS 
    CAS 

    Google Scholar 

  • Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Ou, Q., Peng, Q. & Shuai, Z. Computational screen-out strategy for electrically pumped organic laser materials. Nat. Commun. 11, 4485 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J.-J., Wang, X.-D. & Liao, L.-S. Advances in energy‐level systems of organic lasers. Laser Photonics Rev. 16, 2200366 (2022).

    ADS 

    Google Scholar 

  • Karl, M. et al. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider, D. et al. Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85, 1886–1888 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Gärtner, C., Karnutsch, C., Lemmer, U. & Pflumm, C. The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007).

    ADS 

    Google Scholar 

  • Zhang, Q., Tao, W., Huang, J., Xia, R. & Cabanillas-Gonzalez, J. Toward electrically pumped organic lasers: a review and outlook on material developments and resonator architectures. Adv. Photonics Res. 2, 2000155 (2021).

    Google Scholar 

  • Redecker, M., Bradley, D. D. C., Inbasekaran, M. & Woo, E. P. Nondispersive hole transport in an electroluminescent polyfluorene. Appl. Phys. Lett. 73, 1565–1567 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Wang, K. & Zhao, Y. S. Pursuing electrically pumped lasing with organic semiconductors. Chem 7, 3221–3231 (2021).

    CAS 

    Google Scholar 

  • Sandanayaka, A. S. D. et al. Toward continuous-wave operation of organic semiconductor lasers. Sci. Adv. 3, e1602570 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sandanayaka, A. S. D. et al. Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 12, 061010 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Yang, Y., Turnbull, G. A. & Samuel, I. D. W. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett. 92, 163306 (2008).

    ADS 

    Google Scholar 

  • Hide, F., Kozodoy, P., DenBaars, S. P. & Heeger, A. J. White light from InGaN/conjugated polymer hybrid light-emitting diodes. Appl. Phys. Lett. 70, 2664–2666 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002).

    ADS 

    Google Scholar 

  • Martins, E. R. et al. Low-threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Adv. Opt. Mater. 1, 563–566 (2013).

    Google Scholar 

  • Keum, C. et al. A substrateless, flexible, and water-resistant organic light-emitting diode. Nat. Commun. 11, 6250 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bencheikh, F., Sandanayaka, A. S. D., Fukunaga, T., Matsushima, T. & Adachi, C. Origin of external quantum efficiency roll-off in 4,4′-bis[(N-carbazole)styryl]biphenyl (BSBCz)-based inverted organic light emitting diode under high pulsed electrical excitation. J. Appl. Phys. 126, 185501 (2019).

    ADS 

    Google Scholar 

  • Inoue, M. Suppression of Exciton Quenching in Organic Semiconductor Devices. PhD thesis, Kyushu Univ. (2016).

  • Herrnsdorf, J. et al. Micro-LED pumped polymer laser: a discussion of future pump sources for organic lasers. Laser Photonics Rev. 7, 1065–1078 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Liu, X. et al. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer. Opt. Express 21, 27697–27706 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Vithanage, D. A. et al. Polymer colour converter with very high modulation bandwidth for visible light communications. J. Mater. Chem. C 5, 8916–8920 (2017).

    Google Scholar 

  • Tsiminis, G. et al. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode. Adv. Mater. 25, 2826–2830 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, X., Qu, Y., Fan, D., Kim, J. & Forrest, S. R. Ultrathin, lightweight and flexible organic light-emitting devices with a high light outcoupling efficiency. Org. Electron. 69, 297–300 (2019).

    CAS 

    Google Scholar 

  • Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362–364 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nat. Photonics 3, 546–549 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Heliotis, G. et al. Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14, 91–97 (2004).

    CAS 

    Google Scholar 

  • Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P. & Giebink, N. C. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics 11, 784–788 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. et al. Optically pumped lasing from hybrid perovskite light‐emitting diodes. Adv. Opt. Mater. 8, 1901297 (2019).

    Google Scholar 

  • Wallikewitz, B. H., de la Rosa, M., Kremer, J. H.-W. M., Hertel, D. & Meerholz, K. A lasing organic light-emitting diode. Adv. Mater. 22, 531–534 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Cho, C. et al. Electrical pumping of perovskite diodes: toward stimulated emission. Adv. Sci. 8, e2101663 (2021).

    Google Scholar 

  • Leyden, M. R. et al. Distributed feedback lasers and light-emitting diodes using 1-naphthylmethylamnonium low-dimensional perovskite. ACS Photonics 6, 460–466 (2019).

    CAS 

    Google Scholar 

  • Li, Y. et al. Low threshold, high Q-factor optically pumped organic lasers and exciton dynamics in OLEDs under high current density: singlet–triplet annihilation effect and toward electrical injection lasing. J. Phys. Chem. C 126, 16025–16033 (2022).

    CAS 

    Google Scholar 

  • Shukla, A. et al. Light amplification and efficient electroluminescence from a solution-processable diketopyrrolopyrrole derivative via triplet-to-singlet upconversion. Adv. Funct. Mater. 31, 2009817 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Schwab, T. et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Adv. Opt. Mater. 1, 707–713 (2013).

    Google Scholar 

  • Glaser, J. High power nanosecond pulse laser driver using an GaN FET. In PCIM Europe, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management 1-8 (IEEE, 2018).

  • Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012).

    ADS 

    Google Scholar 

  • Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998).

    ADS 

    Google Scholar 

  • Nowy, S., Krummacher, B. C., Frischeisen, J., Reinke, N. A. & Brütting, W. Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency. J. Appl. Phys. 104, 123109 (2008).

    ADS 

    Google Scholar 

  • Zhang, Y. & Forrest, S. R. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes. Phys. Rev. Lett. 108, 267404 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Braun, D., Moses, D., Zhang, C. & Heeger, A. J. Nanosecond transient electroluminescence from polymer light-emitting-diodes. Appl. Phys. Lett. 61, 3092–3094 (1992).

  • Braun, D. & Heeger, A. J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58, 1982–1984 (1991).

    ADS 
    CAS 

    Google Scholar 

  • Chayet, H., Pogreb, R. & Davidov, D. Transient UV electroluminescence from poly(p-phenylenevinylene) conjugated polymer induced by strong voltage pulses. Phys. Rev. B 56, R12702–R12705 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Lidzey, D. G., Bradley, D. D. C., Alvarado, S. F. & Seidler, P. F. Electroluminescence in polymer films. Nature 386, 135 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Harrison, N. T., Tessler, N., Moss, C. J., Pichler, K. & Friend, R. H. Peak current density and brightness from poly(p-phenylenevinylene) based light-emitting diodes. Opt. Mater. 9, 178–182 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Tessler, N., Harrison, N. T. & Friend, R. H. High peak brightness polymer light-emitting diodes. Adv. Mater. 10, 64–68 (1998).

    CAS 

    Google Scholar 

  • Campbell, I. H., Smith, D. L., Neef, C. J. & Ferraris, J. P. Charge transport in polymer light-emitting diodes at high current density. Appl. Phys. Lett. 75, 841–843 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Kozlov, V. G., Burrows, P. E., Parthasarathy, G. & Forrest, S. R. Optical properties of molecular organic semiconductor thin films under intense electrical excitation. Appl. Phys. Lett. 74, 1057–1059 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Tang, C. W., Vanslyke, S. A. & Chen, C. H. Electroluminescence of doped organic thin films. J. Appl. Phys. 65, 3610–3616 (1989).

    ADS 
    CAS 

    Google Scholar 

  • Pinner, D. J., Tessler, N. & Friend, R. H. Moving the recombination zone in two layer polymer LEDs using high voltage pulses. Synth. Met. 102, 1108–1109 (1999).

    CAS 

    Google Scholar 

  • Wilkinson, C. I. et al. Enhanced performance of pulse driven small area polyfluorene light emitting diodes. Appl. Phys. Lett. 79, 171–173 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Wallikewitz, B. H., Kabra, D., Gélinas, S. & Friend, R. H. Triplet dynamics in fluorescent polymer light-emitting diodes. Phys. Rev. B 85, 045209 (2012).

    ADS 

    Google Scholar 

  • Yokoyama, W., Sasabe, H. & Adachi, C. Carrier injection and transport of steady-state high current density exceeding 1000 A/cm2 in organic thin films. Jpn J. Appl. Phys. 42, L1353 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Wei, B., Ichikawa, M., Furukawa, K., Koyama, T. & Taniguchi, Y. High peak luminance of molecularly dye-doped organic light-emitting diodes under intense voltage pulses. J. Appl. Phys. 98, 044506 (2005).

    ADS 

    Google Scholar 

  • Ichikawa, M. et al. Gain-narrowing characteristics of fluorescent organic molecules with symmetrical or asymmetrical structures in a neat thin-film optical waveguide. J. Photochem. Photobiol. A Chem. 158, 219–221 (2003).

    CAS 

    Google Scholar 

  • Nakanotani, H., Oyamada, T., Kawamura, Y., Sasabe, H. & Adachi, C. Injection and transport of high current density over 1000 A/cm2 in organic light emitting diodes under pulse excitation. Jpn J. Appl. Phys. 44, 3659 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Van Slyke, S. A., Chen, C. H. & Tang, C. W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 69, 2160–2162 (1996).

    ADS 

    Google Scholar 

  • Nakanotani, H., Sasabe, H. & Adachi, C. Low lasing threshold in organic distributed feedback solid state lasers using bisstyrylbenzene derivative as active material. Proc. SPIE. 5937, 59370W (2005).

  • Yamamoto, H., Kasajima, H., Yokoyama, W., Sasabe, H. & Adachi, C. Extremely-high-density carrier injection and transport over 12000A/cm2 into organic thin films. Appl. Phys. Lett. 86, 083502 (2005).

    ADS 

    Google Scholar 

  • Wei, B. et al. Organic solid laser pumped by an organic light-emitting diode. Opt. Express 14, 9436–9443 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Matsushima, T. & Adachi, C. High-current injection and transport on order of kA/cm2 in organic light-emitting diodes having mixed organic/organic heterojunction interfaces. Jpn J. Appl. Phys. 46, L861 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Matsushima, T. & Adachi, C. Observation of extremely high current densities on order of MA/cm2 in copper phthalocyanine thin-film devices with submicron active areas. Jpn J. Appl. Phys. 46, L1179 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Giebink, N. C. & Forrest, S. R. Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes. Phy. Rev. B 77, 235215 (2008).

    ADS 

    Google Scholar 

  • Rabe, T. et al. Highly sensitive determination of the polaron-induced optical absorption of organic charge-transport materials. Phys. Rev. Lett. 102, 137401 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Setoguchi, Y. & Adachi, C. Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers. J. Appl. Phys. 108, 064516 (2010).

    ADS 

    Google Scholar 

  • Inoue, M., Goushi, K., Endo, K., Nomura, H. & Adachi, C. Reduced amplified spontaneous emission threshold in organic semiconductor laser structure with relaxed roll-off characteristics under high current densities. J. Lumin. 143, 754–758 (2013).

    CAS 

    Google Scholar 

  • Kasemann, D., Brückner, R., Fröb, H. & Leo, K. Organic light-emitting diodes under high currents explored by transient electroluminescence on the nanosecond scale. Phys. Rev. B 84, 115208 (2011).

    ADS 

    Google Scholar 

  • Kajii, H., Kojima, T. & Ohmori, Y. Multilayer polyfluorene-based light-emitting diodes for frequency response up to 100 MHz. IEICE Trans. Electron. E94-C, 190–192 (2011).

    ADS 

    Google Scholar 

  • Fischer, A. et al. Self-heating effects in organic semiconductor crossbar structures with small active area. Org. Electron. 13, 2461–2468 (2012).

    CAS 

    Google Scholar 

  • Katsouras, I. et al. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field. Org. Electron. 14, 1591–1596 (2013).

    CAS 

    Google Scholar 

  • Zhang, Y. Excited State Interactions and Management in Organic Light Emitting Diodes. PhD thesis. Univ. Michigan (2014).

  • Sun, Y. et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hayashi, K. et al. Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015).

    ADS 

    Google Scholar 

  • Wong, K.-T. et al. Ter(9,9-diarylfluorene)s: highly efficient blue emitter with promising electrochemical and thermal stability. J. Am. Chem. Soc. 124, 11576–11577 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Yoshida, K., Nakanotani, H. & Adachi, C. Effect of Joule heating on transient current and electroluminescence in p-i-n organic light-emitting diodes under pulsed voltage operation. Org. Electron. 31, 287–294 (2016).

    CAS 

    Google Scholar 

  • Yoshida, K., Matsushima, T., Nakanotani, H. & Adachi, C. Quantification of temperature rise in unipolar organic conductors during short voltage-pulse excitation using electrical testing methods. Org. Electron. 31, 191–197 (2016).

    CAS 

    Google Scholar 

  • Yoshida, K. et al. Joule heat-induced breakdown of organic thin-film devices under pulse operation. J. Appl. Phys. 121, 195503 (2017).

    ADS 

    Google Scholar 

  • Zeng, L. et al. Electrical and optical impulse response of high-speed micro-OLEDs under ultrashort pulse excitation. IEEE Trans. Electron Devices 64, 2942–2948 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Slowik, I. et al. Novel organic light-emitting diode design for future lasing applications. Org. Electron. 48, 132–137 (2017).

    CAS 

    Google Scholar 

  • Meerheim, R. et al. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J. Appl. Phys. 104, 014510 (2008).

    ADS 

    Google Scholar 

  • Chime, A. C. et al. Electrical modelling and design of ultra-fast micro-OLED with coplanar wave-guided electrodes in ON-OFF regime. Org. Electron. 56, 284–290 (2018).

    CAS 

    Google Scholar 

  • Ahmad, V. et al. High-speed OLEDs and area-emitting light-emitting transistors from a tetracyclic lactim semiconducting polymer. Adv. Opt. Mater. 6, 1800768 (2018).

    Google Scholar 

  • Mamada, M., Fukunaga, T., Bencheikh, F., Sandanayaka, A. S. D. & Adachi, C. Low amplified spontaneous emission threshold from organic dyes based on bis-stilbene. Adv. Funct. Mater. 28, 1802130 (2018).

    Google Scholar 

  • Chime, A. C. et al. Analysis of optical and electrical responses of µ-OLED with metallized ITO coplanar waveguide electrodes submitted to nanosecond electrical pulses. IEEE Trans. Electron Devices 66, 2282–2289 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Ahmad, V. et al. Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing. Nat. Commun. 11, 4310 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burns, S., MacLeod, J., Do, T. T., Sonar, P. & Yambem, S. D. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs. Sci. Rep. 7, 40805 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruan, S.-B. et al. A spirofluorene-end-capped bis-stilbene derivative with a low amplified spontaneous emission threshold and balanced hole and electron mobilities. Opt. Mater. 100, 109636 (2020).

    CAS 

    Google Scholar 

  • Mai, V. T. N. et al. Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singlet–triplet annihilation in optical and electrical excitation. Nat. Commun. 11, 5623 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouirimi, A. et al. Threshold estimation of an organic laser diode using a rate-equation model validated experimentally with a microcavity OLED submitted to nanosecond electrical pulses. Org. Electron. 97, 106190 (2021).

    CAS 

    Google Scholar 

  • Shukla, A. et al. Low light amplification threshold and reduced efficiency roll-off in thick emissive layer OLEDs from a diketopyrrolopyrrole derivative. Macromol. Rapid Commun. 43, 2200115 (2022).

    CAS 

    Google Scholar 

  • Shukla, A. et al. Controlling triplet–triplet upconversion and singlet-triplet annihilation in organic light-emitting diodes for injection lasing. Commun. Mater. 3, 27 (2022).

    CAS 

    Google Scholar 

  • Lenstra, D. et al. Ultra-short optical pulse generation in micro OLEDs and the perspective of lasing. J. Opt. 24, 034007 (2022).

    ADS 

    Google Scholar 

  • Yoshida, K. et al. Electrically driven organic laser using integrated OLED pumping (dataset). University of St Andrews Research Portal. https://doi.org/10.17630/1c8b9610-0da3-4f20-ae02-2af032d80070 (2023).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *