Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
Google Scholar
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
Google Scholar
Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).
Google Scholar
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
Google Scholar
Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).
Google Scholar
Sherratt, A. in Pattern of the Past: Studies in the Honour of David Clarke (eds Hodder, I. et al.) 261–306 (Cambridge Univ. Press, 1981).
Hansen, S. in Appropriating Innovations: Entangled Knowledge in Eurasia, 5000–1500 BC (eds Stockhammer, P. & Maran, J.) 136–148 (Oxbow Books, 2017).
Librado, P. et al. The origins and spread of domestic horses from the Western Eurasian steppes. Nature 598, 634–640 (2021).
Google Scholar
Scott, A. et al. Emergence and intensification of dairying in the Caucasus and Eurasian steppes. Nat. Ecol. Evol. 6, 813–822 (2022).
Google Scholar
Renfrew, C. & Appadurai, A. in The Social Life of Things: Commodities in Cultural Perspective (ed. Appadurai, A.) 141–168 (Cambridge Univ. Press, 1986).
Stockhammer, P. in Rich and Poor—Competing for Resources in Prehistoric Societies (eds Meller, H. et al.) 77–84 (Ludwig-Maximilians-Universität München, 2016).
Hansen, S. in Surplus without the State—Political Forms in Prehistory (eds Meller, H. et al.) 221–246 (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt—Landesmuseum für Vorgeschichte, 2018).
Demoule, J.-P. in La Révolution Néolithique en France 78–89 (La Découverte, 2007).
Hansen, S. et al. Pietrele am “Lacul Gorgana”: Bericht über die Ausgrabungen in der neolithischen und kupferzeitlichen Siedlung und die geomorphologischen Untersuchungen in den Sommern 2012–2016. Eurasia Antiqua 20, 1–116 (2014).
Boyadzhiev, Y., Boyadzhiev, K., Brandtstätter, L. & Krauß, R. Chronological modelling of the Chalcolithic settlement layers at Tell Yunatsite, Southern Bulgaria. Doc. Praehist. 48, 252–275 (2021).
Google Scholar
Todorova, H. Die überregionalen komplexen Gemeinschaften, Kulturblöcke und ökologischen Krisen in der Urgeschichte im Raum der unteren Donau (VII-I Jahrtausend v. Chr.). Studia Praehist. 14, 143–154 (2011).
Boyadzhiev, K. in Southeast Europe and Anatolia in Prehistory—Essays in Honor of Vassil Nokilov on his 65th Anniversary (ed. Krum Bacvarov, R. G.) 261–268 (Verlag Dr. Rudolf Habelt GmbH, 2016).
Gimbutas, M. A. The Civilization of the Goddess: The World of Old Europe (Harper San Francisco, 1991).
Müller, J., Rassmann, K. & Videiko, M. Trypillia Mega-Sites and European Prehistory: 4100–3400 BC (Routledge, 2016).
Gaydarska, B. Early Urbanism in Europe: The Trypillia Megasites of the Ukrainian Forest-Steppe (De Gruyter, 2020).
Hansen, S. Arsenic Bronze: an archaeological introduction into a key innovation. Eurasia Antiqua 23, 139–162 (2021).
Klimscha, F. Transforming technical know-how in time and space. Using the digital atlas of innovations to understand the innovation process of animal traction and the wheel. eTopoi J. Ancient Stud. 6, 16–63 (2017).
Piotrovsky, Y. Y. The Maikop kurgan (Oshad): a modern view. Camera Praehist. 1, 61–75 (2020).
Frînculeasa, A. Earthen burial mounds and the Coţofeni Culture south of the Carpathians. The archaeological research in Ariceștii-Rahtivani—Movila pe Răzoare. Ziridava. Studia Archaeologica 34, 35–90 (2020).
Manzura, I. in Repräsentationen der Macht (ed. Hansen, S.) 73–96 (Kolloquien zur Vor- und Frühgeschichte 25, 2020).
Manzura, B. & Govedarica, I. in Der Schwarzmeerraum vom Äneolithikum bis in die Früheisenzeit [5000-500 v.Chr.]: Band 2: Globale Entwicklung versus Lokalgeschehen (eds Sava, E. et al.) 41–61 (Verlag Marie Leidorf, 2011).
Racimo, F., Sikora, M., Vander Linden, M., Schroeder, H. & Lalueza-Fox, C. Beyond broad strokes: sociocultural insights from the study of ancient genomes. Nat. Rev. Genet. 21, 355–366 (2020).
Google Scholar
Alexandrov, S. in Gold & Bronze. Metals, Technologies and Interregional Contacts in the Eastern Balkans during the Bronze Age (eds Alexandrov, S. et al.) 85–96 (National Archaeological Institute and Museum, 2018).
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
Google Scholar
Alexandrov, S. & Kaiser, E. in Der Schwarzmeerraum vom Neolithikum bis in die Früheisenzeit (6000-600 v. Chr.) (eds Nikolov, V. & Schier, W.) 359–370 (Verlag Marie Leidorf, 2016).
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
Google Scholar
Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).
Google Scholar
Chintalapati, M., Patterson, N. & Moorjani, P. Reconstructing the spatiotemporal patterns of admixture during the European Holocene using a novel genomic dating method. eLife 11, e77625 (2022).
Google Scholar
Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005).
Google Scholar
Kivisild, T. The study of human Y chromosome variation through ancient DNA. Hum. Genet. 136, 529–546 (2017).
Google Scholar
Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).
Google Scholar
Brunel, S. et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl Acad. Sci. USA 117, 12791–12798 (2020).
Google Scholar
Brace, S. et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019).
Google Scholar
Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 590 (2019).
Google Scholar
Rassamakin, Y. in Late Prehistoric Exploitation of the Eurasian Steppe (eds Levine, M. et al.) 59–182 (McDonald Institute Monographs, 1999).
Rassamakin, J. Die nordpontische Steppe in der Kupferzeit: Gräber aus der Mitte des 5. Jts. bis Ende des 4. Jts. v. Chr. (Philipp von Zabern, 2004).
Anthony, D. in The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement (eds Yanko-Hombach, V. et al.) 345–370 (Springer, 2007).
Petrenko, V., Gerling, C. & Kaiser, E. Majaki—Ein komplexes Denkmal der Usatovo-Kultur. Eurasia Antiqua 21, 45–74 (2015).
Wood, R. E. et al. Freshwater radiocarbon reservoir effects at the burial ground of Minino, Northwest Russia. Radiocarbon 55, 163–177 (2013).
Google Scholar
Anthony, D. W. et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehist. Zeitschr. 97, 22–67 (2022).
Google Scholar
Immel, A. et al. Gene-flow from steppe individuals into Cucuteni-Trypillia associated populations indicates long-standing contacts and gradual admixture. Sci. Rep. 10, 4253 (2020).
Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).
Google Scholar
Rascovan, N. et al. Emergence and spread of basal lineages of Yersinia pestis during the Neolithic Decline. Cell 176, 295–305 (2019).
Google Scholar
Susat, J. et al. A 5,000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell Rep. 35, 109278 (2021).
Google Scholar
Andrades Valtueña, A. et al. Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc. Natl Acad. Sci. USA 119, e2116722119 (2022).
Google Scholar
Key, F. M. et al. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 4, 324–333 (2020).
Google Scholar
Kocher, A. et al. Ten millennia of hepatitis B virus evolution. Science 374, 182–188 (2021).
Google Scholar
Reingruber, A. & Rassamakin, J. in Der Schwarzmeerraum vom Neolithikum bis in die Früheisenzeit (6000–600 v. Chr.) (eds Nikolov, V. & Schier, W.) 273–310 (Verlag Marie Leidorf, 2016).
Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
Google Scholar
Papac, L. et al. Dynamic changes in genomic and social structures in third millennium bc central Europe. Sci. Adv. 7, eabi6941 (2021).
Google Scholar
Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2022).
Higham, T. et al. New perspectives on the Varna cemetery (Bulgaria)–AMS dates and social implications. Antiquity 81, 640–654 (2007).
Google Scholar
Krauß, R. et al. Chronology and development of the Chalcolithic necropolis of Varna I. Doc. Praehist. 44, 282–305 (2017).
Google Scholar
Higham, T., Slavchev, V., Gaydarska, B. & Chapman, J. AMS dating of the Late Copper Age Varna Cemetery, Bulgaria. Radiocarbon 60, 493–516 (2018).
Google Scholar
Orfanou, E., Himmel, M., Aron, F. & Haak, W. Minimally-invasive sampling of pars petrosa (os temporale) for ancient DNA extraction V.2. protocols.io https://doi.org/10.17504/protocols.io.bqd8ms9w (2020).
Neumann, G. U., Andrades Valtuena, A., Fellow Yates, J. A., Stahl, R. & Brandt, G. Tooth sampling from the inner pulp chamber for ancient DNA Extraction V.2. protocols.io https://doi.org/10.17504/protocols.io.bqebmtan (2020).
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
Google Scholar
Velsko, I., Skourtanioti, E. & Brandt, G. Ancient DNA extraction from skeletal material. protocols.io https://doi.org/10.17504/protocols.io.baksicwe (2020).
Aron, F., Neumann, G. U. & Brandt, G. Half-UDG treated double-stranded ancient DNA library preparation for Illumina sequencing V.1. protocols.io https://doi.org/10.17504/protocols.io.bmh6k39e (2020).
Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).
Google Scholar
Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).
Google Scholar
Stahl, R. et al. Illumina double-stranded DNA dual indexing for ancient DNA V.2. protocols.io https://doi.org/10.17504/protocols.io.bvt8n6rw (2021).
Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).
Google Scholar
Rohrlach, A. B. et al. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci. Rep. 11, 15005 (2021).
Google Scholar
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
Google Scholar
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
Google Scholar
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
Google Scholar
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
Google Scholar
Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).
Google Scholar
Schiffels, S. sequenceTools. GitHub https://github.com/stschiff/sequenceTools (2019).
Li, H. et al. 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/ Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).
Google Scholar
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).
Google Scholar
Mittnik, A., Wang, C.-C., Svoboda, J. & Krause, J. A molecular approach to the sexing of the triple burial at the Upper Paleolithic Site of Dolní Věstonice. PLoS ONE 11, e0163019 (2016).
Google Scholar
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
Google Scholar
Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).
Google Scholar
Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
Google Scholar
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–63 (2016).
Google Scholar
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Google Scholar
Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).
Google Scholar
Delaneau, O. GLIMPSE. github.io https://odelaneau.github.io/GLIMPSE/tutorial_b38.html (2020).
Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).
Google Scholar
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
Google Scholar
1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Google Scholar
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).
Google Scholar
Ringbauer, H. et al. ancIBD—Screening for identity by descent segments in human ancient DNA. Preprint at bioRxiv https://doi.org/10.1101/2023.03.08.531671 (2023).
Hübler, R. et al. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol. 20, 280 (2019).
Google Scholar
Vågene, Å. J. et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2, 520–528 (2018).
Google Scholar