Strange IndiaStrange India


  • 1.

    Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    Google Scholar 

  • 2.

    Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Li, C. et al. Engineered transport in microporous materials and membranes for clean energy technologies. Adv. Mater. 30, 1704953 (2018).

    Google Scholar 

  • 4.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  • 5.

    Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Burke, M. D., Berger, E. M. & Schreiber, S. L. Generating diverse skeletons of small molecules combinatorially. Science 302, 613–618 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Burke, M. D. & Schreiber, S. L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Google Scholar 

  • 8.

    Tan, D. S. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat. Chem. Biol. 1, 74–84 (2005).

    CAS 

    Google Scholar 

  • 9.

    Schreiber, S. L. Molecular diversity by design. Nature 457, 153–154 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Nielsen, T. E. & Schreiber, S. L. Towards the optimal screening collection: a synthesis strategy. Angew. Chem. Int. Ed. 47, 48–56 (2008).

    CAS 

    Google Scholar 

  • 11.

    Galloway, W. R. J. D. et al. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 1, 80 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Haggarty, S. J. The principle of complementarity: chemical versus biological space. Curr. Opin. Chem. Biol. 9, 296–303 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Tranchemontagne, D. J., Ni, Z., O’Keeffe, M. & Yaghi, O. M. Reticular chemistry of metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5136–5147 (2008).

    CAS 

    Google Scholar 

  • 15.

    Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nat. Chem. 2, 915–920 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Bisbey, R. P. & Dichtel, W. R. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 3, 533–543 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Cooper, A. I. Porous molecular solids and liquids. ACS Cent. Sci. 3, 544–553 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Mannich, C. & Krösche, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. 250, 647–667 (1912).

    CAS 

    Google Scholar 

  • 20.

    Arend, M., Westermann, B. & Risch, N. Modern variants of the Mannich reaction. Angew. Chem. Int. Ed. 37, 1044–1070 (1998).

    Google Scholar 

  • 21.

    McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Patel, H. A. & Yavuz, C. T. Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem. Commun. 48, 9989–9991 (2012).

    CAS 

    Google Scholar 

  • 23.

    Baran, M. J. et al. Design rules for membranes from polymers of intrinsic microporosity for crossover-free aqueous electrochemical devices. Joule 3, 2968–2985 (2019).

    CAS 

    Google Scholar 

  • 24.

    Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020); author correction 19, 251 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Eloy, F. & Lenaers, R. The chemistry of amidoximes and related compounds. Chem. Rev. 62, 155–183 (1962).

    CAS 

    Google Scholar 

  • 26.

    Bartoli, G. et al. Unusual and unexpected reactivity of t-butyl dicarbonate (Boc2O) with alcohols in the presence of magnesium perchlorate. A new and general route to t-butyl ethers. Org. Lett. 7, 427–430 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Bruce, P. G. & Vincent, C. A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interf. Electrochem. 225, 1–17 (1987).

    CAS 

    Google Scholar 

  • 28.

    Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).

    CAS 

    Google Scholar 

  • 29.

    Choo, Y., Halat, D. M., Villaluenga, I., Timachova, K. & Balsara, N. P. Diffusion and migration in polymer electrolytes. Prog. Polym. Sci. 103, 101220 (2020).

    CAS 

    Google Scholar 

  • 30.

    Laio, A. & Gervasio, F. L. Metadynamics: a method to stimulate rare events and reconstruct the free energy in biophysics. Rep. Prog. Phys. 71, 126601 (2008).

    ADS 

    Google Scholar 

  • 31.

    Barducci, A., Bonomi, M. & Parrinello, M. Metadynamics. WIREs Comput. Mol. Sci. 1, 826–843 (2011).

    CAS 

    Google Scholar 

  • 32.

    Li, C. et al. A polysulfide-blocking microporous polymer membrane tailored for hybrid Li–sulfur flow batteries. Nano Lett. 15, 5724–5729 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Ward, A. L. et al. Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries. ACS Cent. Sci. 3, 399–406 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Ma, L. et al. Nanoporous polymer films with high cation transference number stabilize lithium metal anodes in light-weight batteries for electrified transportation. Nano Lett. 19, 1387–1394 (2019).

    ADS 

    Google Scholar 

  • 35.

    Fu, C. et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Shi, F. et al. Lithium metal stripping beneath the solid electrolyte interphase. Proc. Natl Acad. Sci. USA 115, 8529–8534 (2018).

    CAS 

    Google Scholar 

  • 37.

    Albertus, P. et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Fredericks, W. L., Sripad, S., Bower, G. C. & Viswanathan, V. Performance metrics required of next-generation batteries to electrify Vertical Takeoff And Landing (VTOL) aircraft. ACS Energy Lett. 3, 2989–2994 (2018).

    CAS 

    Google Scholar 

  • 39.

    Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Viswanathan, V. & Knapp, B. M. Potential for electric aircraft. Nat. Sustain. 2, 88–89 (2019).

    Google Scholar 

  • 41.

    Sripad, S. & Viswanathan, V. Quantifying the economic case for electric semi-trucks. ACS Energy Lett. 4, 149–155 (2019).

    CAS 

    Google Scholar 

  • 42.

    Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 43.

    Wei, X. et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26, 7649–7653 (2014).

    CAS 

    Google Scholar 

  • 44.

    Yang, Z. et al. Highly conductive anion-exchange membranes from microporous Tröger’s base polymers. Angew. Chem. Int. Ed. 55, 11499 (2016).

    CAS 

    Google Scholar 

  • 45.

    Doris, S. E. et al. Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Angew. Chem. Int. Ed. 56, 1595–1599 (2017).

    CAS 

    Google Scholar 

  • 46.

    Yushkin, A., Vasilensky, V., Khotimskiy, V., Szymczyk, A. & Volkov, A. Evaluation of liquid transport properties of hydrophobic polymers of intrinsic microporosity by electrical resistance measurement. J. Membr. Sci. 554, 346 (2018).

    CAS 

    Google Scholar 

  • 47.

    Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    ADS 

    Google Scholar 

  • 48.

    Gromski, P. S., Henson, A., Granda, J. & Cronin, L. How to explore chemical space using algorithms and automation. Nat. Rev. Chem. 3, 119–128 (2019).

    Google Scholar 

  • 49.

    Häse, F., Roch, L. M. & Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 1, 282–291 (2019).

    Google Scholar 

  • 50.

    Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *