Strange IndiaStrange India


  • Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

    Article 
    CAS 

    Google Scholar 

  • McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16, 281–284 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhao, S.-R. et al. Field demonstration of distributed quantum sensing without post-selection. Phys. Rev. X 11, 031009 (2021).

    CAS 

    Google Scholar 

  • Zhang, Z. & Zhuang, Q. Distributed quantum sensing. Quantum Sci. Tech. 6, 043001 (2021).

    Article 
    ADS 

    Google Scholar 

  • Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced positioning and clock synchronization. Nature 412, 417–419 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Beloy, K. et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature 602, 425–430 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Overstreet, C., Asenbaum, P., Curti, J., Kim, M. & Kasevich, M. A. Observation of a gravitational Aharonov–Bohm effect. Science 375, 226–229 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, L.-Z. et al. Distributed quantum phase estimation with entangled photons. Nat. Photonics 15, 137–142 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xia, Y. et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network. Phys. Rev. Lett. 124, 150502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, H. et al. Experimental quantum network coding. npj Quantum Inf. 5, 89 (2019).

  • Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2, 033395 (2020).

    Article 
    CAS 

    Google Scholar 

  • Matsukevich, D. N. et al. Entanglement of remote atomic qubits. Phys. Rev. Lett. 96, 030405 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Simon, J., Tanji, H., Ghosh, S. & Vuletić, V. Single-photon bus connecting spin-wave quantum memories. Nat. Phys. 3, 765–769 (2007).

    Article 
    CAS 

    Google Scholar 

  • Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016).

  • Gündoğan, M.et al. Proposal for space-borne quantum memories for global quantum networking. npj Quantum Inf. 7, 128 (2021).

  • Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article 

    Google Scholar 

  • Polzik, E. S. & Ye, J. Entanglement and spin squeezing in a network of distant optical lattice clocks. Phys. Rev. A 93, 021404 (2016).

    Article 
    ADS 

    Google Scholar 

  • Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Orientation-dependent entanglement lifetime in a squeezed atomic clock. Phys. Rev. Lett. 104, 250801 (2010).

  • Gessner, M., Pezzè, L. & Smerzi, A. Sensitivity bounds for multiparameter quantum metrology. Phys. Rev. Lett. 121, 130503 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhuang, Q., Zhang, Z. & Shapiro, J. H. Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A 97, 032329 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Eckert, K. et al. Differential atom interferometry beyond the standard quantum limit. Phys. Rev. A 73, 013814 (2006).

    Article 
    ADS 

    Google Scholar 

  • Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

  • Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

  • Fadel, M., Zibold, T., Décamps, B. & Treutlein, P. Spatial entanglement patterns and Einstein–Podolsky–Rosen steering in Bose–Einstein condensates. Science 360, 409–413 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lange, K. et al. Entanglement between two spatially separated atomic modes. Science 360, 416–418 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kunkel, P. et al. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science 360, 413–416 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Anders, F. et al. Momentum entanglement for atom interferometry. Phys. Rev. Lett. 127, 140402 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Malia, B. K., Martínez-Rincón, J., Wu, Y., Hosten, O. & Kasevich, M. A. Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit. Phys. Rev. Lett. 125, 043202 (2020).

  • Fadel, M., Yadin, B., Mao, Y., Byrnes, T. & Gessner, M. Multiparameter quantum metrology and mode entanglement with spatially split nonclassical spin states. Preprint at https://arxiv.org/abs/2201.11081 (2022).

  • Gessner, M., Smerzi, A. & Pezzè, L. Multiparameter squeezing for optimal quantum enhancements in sensor networks. Nat. Commun. 11, 3817 (2020).

  • Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chaudhary, M. et al. Stroboscopic quantum nondemolition measurements for enhanced entanglement generation between atomic ensembles. Phys. Rev. A 105, 022443 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abe, M. et al. Matter-wave atomic gradiometer interferometric sensor (MAGIS-100). Quantum Sci. Tech. 6, 044003 (2021).

    Article 
    ADS 

    Google Scholar 

  • Zhan, M.-S. et al. ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna. Int. J. Mod. Phys. D 29, 1940005 (2019).

    Article 
    ADS 

    Google Scholar 

  • Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, 6501 (2018).

  • Safronova, M. S., Porsev, S. G., Sanner, C. & Ye, J. Two clock transitions in neutral Yb for the highest sensitivity to variations of the fine-structure constant. Phys. Rev. Lett. 120, 173001 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tino, G. M. Testing gravity with cold atom interferometry: results and prospects. Quantum Sci. Tech. 6, 024014 (2021).

    Article 
    ADS 

    Google Scholar 

  • Jing, Y., Fadel, M., Ivannikov, V. & Byrnes, T. Split spin-squeezed Bose–Einstein condensates. New J. Phys. 21, 093038 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Parazzoli, L. P., Hankin, A. M. & Biedermann, G. W. Observation of free-space single-atom matter wave interference. Phys. Rev. Lett. 109, 230401 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Malitesta, M., Smerzi, A. & Pezzè, L. Distributed quantum sensing with squeezed-vacuum light in a configurable network of Mach–Zehnder interferometers Preprint at https://arxiv.org/abs/2109.09178 (2021).

  • Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Malia, B. K. Integration of Spin Squeezed States Into Free Space Atomic Sensors. PhD thesis, Stanford Univ. (2021).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *