Strange IndiaStrange India


  • 1.

    Rangaswamy, V., Jiralerspong, S., Parry, R. & Bender, C. L. Biosynthesis of the Pseudomonas polyketide coronafacic acid requires monofunctional and multifunctional polyketide synthase proteins. Proc. Natl Acad. Sci. USA 95, 15469–15474 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Ullrich, M. & Bender, C. L. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. J. Bacteriol. 176, 7574–7586 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Staswick, P. E. & Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117–2127 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Fonseca, S. et al. (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344–350 (2009).

    CAS 

    Google Scholar 

  • 5.

    Westfall, C. S. et al. Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336, 1708–1711 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Winn, M., Richardson, S. M., Campopiano, D. J. & Micklefield, J. Harnessing and engineering amide bond forming ligases for the synthesis of amides. Curr. Opin. Chem. Biol. 55, 77–85 (2020).

    CAS 

    Google Scholar 

  • 7.

    Parry, R. J., Jiralerspong, S., Mhaskar, S., Alemany, L. & Willcott, R. Investigations of coronatine biosynthesis. Elucidation of the mode of incorporation of pyruvate into coronafacic acid. J. Am. Chem. Soc. 118, 703–704 (1996).

    CAS 

    Google Scholar 

  • 8.

    Tao, T. & Parry, R. J. Determination by enantioselective synthesis of the absolute configuration of CPE, a potential intermediate in coronatine biosynthesis. Org. Lett. 3, 3045–3047 (2001).

    CAS 

    Google Scholar 

  • 9.

    Strieter, E. R., Koglin, A., Aron, Z. D. & Walsh, C. T. Cascade reactions during coronafacic acid biosynthesis: elongation, cyclization, and functionalization during Cfa7-catalyzed condensation. J. Am. Chem. Soc. 131, 2113–2115 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Parry, R. J., Lin, M. T., Walker, A. E. & Mhaskar, S. Biosynthesis of coronatine: investigations of the biosynthesis of coronamic acid. J. Am. Chem. Soc. 113, 1849–1850 (1991).

    CAS 

    Google Scholar 

  • 11.

    Vaillancourt, F. H., Yeh, E., Vosburg, D. A., O’Connor, S. E. & Walsh, C. T. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436, 1191–1194 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Kelly, W. L. et al. Characterization of the aminocarboxycyclopropane-forming enzyme CmaC. Biochemistry 46, 359–368 (2007).

    CAS 

    Google Scholar 

  • 13.

    Rangaswamy, V. et al. Expression and analysis of coronafacate ligase, a thermoregulated gene required for production of the phytotoxin coronatine in Pseudomonas syringae. FEMS Microbiol. Lett. 154, 65–72 (1997).

    CAS 

    Google Scholar 

  • 14.

    Slawiak, M. & Lojkowska, E. Genes responsible for coronatine synthesis in Pseudomonas syringae present in the genome of soft rot bacteria. Eur. J. Plant Pathol. 124, 353–361 (2009).

    CAS 

    Google Scholar 

  • 15.

    Bignell, D. R. D. et al. Streptomyces scabies 87–22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol. Plant Microbe Interact. 23, 161–175 (2010).

    CAS 

    Google Scholar 

  • 16.

    Fyans, J. K., Altowairish, M. S., Li, Y. & Bignell, D. R. Characterization of the coronatine-like phytotoxins produced by the common scab pathogen Streptomyces scabies. Mol. Plant Microbe Interact. 28, 443–454 (2015).

    CAS 

    Google Scholar 

  • 17.

    Mitchell, R. E. & Frey, E. J. Production of N-coronafacoyl-L-amino-acid-analogs of coronatine by Pseudomonas syringae pv Atropurpurea in liquid cultures supplemented with L-amino acids. J. Gen. Microbiol. 132, 1503–1507 (1986).

    CAS 

    Google Scholar 

  • 18.

    Mitchell, R. E. & Ford, K. L. Chlorosis-inducing products from Pseudomonas syringae pathovars: new N-coronafacoyl compounds. Phytochemistry 49, 1579–1583 (1998).

    CAS 

    Google Scholar 

  • 19.

    Littleson, M. M. et al. Scalable total synthesis and comprehensive structure-activity relationship studies of the phytotoxin coronatine. Nat. Commun. 9, 1105 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Sabatini, M. T., Boulton, L. T., Sneddon, H. F. & Sheppard, T. D. A green chemistry perspective on catalytic amide bond formation. Nat. Catal. 2, 10–17 (2019).

    CAS 

    Google Scholar 

  • 21.

    Sabatini, M. T., Boulton, L. T. & Sheppard, T. D. Borate esters: simple catalysts for the sustainable synthesis of complex amides. Sci. Adv. 3, e1701028 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Krause, T., Baader, S., Erb, B. & Gooßen, L. J. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes. Nat. Commun. 7, 11732 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Stephenson, N. A., Zhu, J., Gellman, S. H. & Stahl, S. S. Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. J. Am. Chem. Soc. 131, 10003–10008 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Allen, C. L., Atkinson, B. N. & Williams, J. M. J. Transamidation of primary amide with amines using hydroxylamine hydrochloride as an inorganic catalyst. Angew. Chem. Int. Edn 51, 1383–1386 (2012).

    CAS 

    Google Scholar 

  • 25.

    Al-Zoubi, R. M., Marion, O. & Hall, D. G. Direct and waste-free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature. Angew. Chem. Int. Edn 47, 2876–2879 (2008).

    CAS 

    Google Scholar 

  • 26.

    Noda, H., Furutachi, M., Asada, Y., Shibasaki, M. & Kumagai, N. Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nat. Chem. 9, 571–577 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Scheidt, K. Amide bonds made in reverse. Nature 465, 1020–1022 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Goswami, A. & Van Lanen, S. G. Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome. Mol. Biosyst. 11, 338–353 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Petchey, M. et al. The broad aryl acid specificity of the amide bond synthetase McbA suggests potential for the biocatalytic synthesis of amides. Angew. Chem. Int. Edn 57, 11584–11588 (2018).

    CAS 

    Google Scholar 

  • 30.

    Wood, A. J. L. et al. Adenylation activity of carboxylic acid reductases enables the synthesis of amides. Angew. Chem. Int. Edn 56, 14498–14501 (2017).

    CAS 

    Google Scholar 

  • 31.

    Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471–479 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 32.

    Pérombelon, M. C. M. Potato diseases caused by soft rot Erwinias: an overview of pathogenesis. Plant Pathol. 51, 1–12 (2002).

    Google Scholar 

  • 33.

    Bell, K. S. et al. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl Acad. Sci. USA 101, 11105–11110 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Bottini, R., Fulchieri, M., Pearce, D. & Pharis, R. P. Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 90, 45–47 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Schüler, G. et al. Coronalon: a powerful tool in plant stress physiology. FEBS Lett. 563, 17–22 (2004).

    Google Scholar 

  • 36.

    Shockey, J. M., Fulda, M. S. & Browse, J. Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme A synthetases. Plant Physiol. 132, 1065–1076 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Stuhlsatz-Krouper, S. M., Bennett, N. E. & Schaffer, J. E. Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport. J. Biol. Chem. 273, 28642–28650 (1998).

    CAS 

    Google Scholar 

  • 38.

    Nocek, B. P. et al. Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases. ACS Catal. 8, 10746–10760 (2018).

    CAS 

    Google Scholar 

  • 39.

    Sheldon, R. A. Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem. Soc. Trans. 35, 1583–1587 (2007).

    CAS 

    Google Scholar 

  • 40.

    Zhang, L. et al. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J. Med. Chem. 63, 4562–4578 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Boras, B. et al. Discovery of a novel inhibitor of coronavirus 3CL protease for the potential treatment of COVID-19. Preprint at https://www.biorxiv.org/content/10.1101/2020.09.12.293498v3 (2020).

  • 42.

    Zhou, H.-J. et al. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J. Med. Chem. 52, 3028–3038 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Chen, C.-S., Fujimoto, Y., Girdaukas, G. & Sih, C. J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104, 7294–7299 (1982).

    CAS 

    Google Scholar 

  • 44.

    Jervis, P. J., Amorim, C., Pereira, T., Martins, J. A. & Ferreura, P. M. T. Exploring the properties and potential biomedical applications of NSAID-capped peptide hydrogels. Soft Matter 16, 10001–10012 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Tiwari, A. D. et al. Microwave assisted synthesis and QSAR study of novel NSAID acetaminophen conjugates with amino acid linkers. Org. Biomol. Chem. 12, 7238–7249 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Andexer, J. N. & Richter, M. Emerging enzymes for ATP regeneration in biocatalytic processes. ChemBioChem 16, 380–386 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Strohmeier, G. A., Eiteljorg, I. C., Schwarz, A. & Winkler, M. Enzymatic one-step reduction of carboxylates to aldehydes with cell-free regeneration of ATP and NADPH. Chem. Eur. J. 25, 6119–6123 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Philpott, H. K., Thomas, P. J., Tew, D., Fuerst, D. E. & Lovelock, S. L. A versatile biosynthetic approach to amide bond formation. Green Chem. 20, 3426–3431 (2018).

    CAS 

    Google Scholar 

  • 49.

    Hara, R., Hirai, K., Suzuki, S. & Kino, K. A chemoenzymatic process for amide bond formation by an adenylating enzyme-mediated mechanism. Sci. Rep. 8, 2950 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *