Strange IndiaStrange India


  • 1.

    Kramer, G. J., van Santen, R. A., Emeis, C. A. & Nowak, A. K. Understanding the acid behaviour of zeolites from theory and experiment. Nature 363, 529–531 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    She, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article 

    Google Scholar 

  • 3.

    Brown, G. E. Jr & Calas, G. Mineral–aqueous solution interfaces and their impact on the environment. Geochem. Perspect. 1, 483–742 (2012).

    Article 

    Google Scholar 

  • 4.

    Silverman, R. B. Organic Chemistry of Enzyme-Catalyzed Reactions (Academic Press, 2002).

  • 5.

    Hiemstra, T., Venema, P. & Riemsdijk, W. Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle. J. Colloid Interface Sci. 184, 680–692 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Cheng, J. & Sprik, M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. J. Chem. Theory Comput. 6, 880–889 (2010).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Gittus, O. R. von Rudorff, G. F., Rosso, K. M. & Blumberger, J. Acidity constants of the hematite–liquid water interface from ab initio molecular dynamics. J. Phys. Chem. Lett. 9, 5574–5582 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Kosmulski, M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv. Colloid Interface Sci. 152, 14–25 (2009).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Bullard, J. W. & Cima, M. J. Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces. Langmuir 22, 10264–10271 (2006).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90, 011101 (2019).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Setvín, M. et al. Polarity compensation mechanisms on the perovskite surface KTaO3(001). Science 359, 572–575 (2018).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Peng, J. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 557, 701–705 (2018); correction 563, E18 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Lantz, M. A. et al. Quantitative measurement of short-range chemical bonding forces. Science 291, 2580–2583 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Gross, L. et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Onoda, J., Ondráček, M., Jelínek, P. & Sugimoto, Y. Electronegativity determination of individual surface atoms by atomic force microscopy. Nat. Commun. 8, 15155 (2017).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Hunter, E. P. L. & Lias, S. G. Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data 27, 413–656 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Gorte, R. J. & White, D. Interactions of chemical species with acid sites in zeolites. Top. Catal. 4, 57–69 (1997).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Larrazábal, G. O., Shinagawa, T., Martín, A. J. & Pérez-Ramírez, J. Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nat. Commun 9, 1477 (2018).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Martin, O. et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 128, 6369–6373 (2016).

    Article 

    Google Scholar 

  • 22.

    Hagleitner, D. R. et al. Bulk and surface characterization of In2O3(001) single crystals. Phys. Rev. B 85, 115441 (2012).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Wagner, M. et al. Reducing the In2O3(111) surface results in ordered indium adatoms. Adv. Mater. Interfaces 1, 1400289 (2014).

    Article 

    Google Scholar 

  • 24.

    Capdevila-Cortada, M., Vilé, G., Teschner, D., Pérez-Ramírez, J. & López, N. Reactivity descriptors for ceria in catalysis. Appl. Catal. B 197, 299–312 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Wagner, M. et al. Resolving the structure of a well-ordered hydroxyl overlayer on In2O3(111): nanomanipulation and theory. ACS Nano 11, 11531–11541 (2017).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Yurtsever, A. et al. Understanding image contrast formation in TiO2 with force spectroscopy. Phys. Rev. B 85, 125416 (2012).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Stetsovych, O. et al. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy. Nat. Commun. 6, 7265 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Sugimoto, Y. et al. Quantum degeneracy in atomic point contacts revealed by chemical force and conductance. Phys. Rev. Lett. 111, 106803–106805 (2013).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Kowalski, P. M., Meyer, B. & Marx, D. Composition, structure, and stability of the rutile TiO2(110) surface: oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Phys. Rev. B 79, 115410 (2009).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Lackner, P. et al. Water adsorption at zirconia: from the ZrO2(111)/Pt3Zr(0001) model system to powder samples. J. Mater. Chem. A 6, 17587–17601 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Huber, F. & Giessibl, F. J. Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 88, 073702 (2017).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Štubian, M., Bobek, J., Setvín, M., Diebold, U. & Schmid, M. Fast low-noise transimpedance amplifier for scanning tunneling microscopy and beyond. Rev. Sci. Instrum. 91, 074701 (2020).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 

    Google Scholar 

  • 35.

    Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Wagner, M. et al. Well-ordered In adatoms at the In2O3(111) surface created by Fe deposition. Phys. Rev. Lett. 117, 206101 (2016).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Sokolović, I. et al. Resolving the adsorption of molecular O2 on the rutile TiO2(110) surface by noncontact atomic force microscopy. Proc. Natl Acad. Sci. USA 117, 14827–14837 (2020).

    Article 

    Google Scholar 

  • 40.

    Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Linstrom, P. J. & Mallard, W. G. (eds) NIST Chemistry WebBook: NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2018); https://webbook.nist.gov/chemistry.



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *