Strange India All Strange Things About India and world


  • 1.

    Hort, A. Enquiry into Plants, Vol. I, by Theophrastus (Harvard Univ. Press, 1948).

  • 2.

    Peppe, D. J. et al. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol. 190, 724–739 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Gates, D. M. Transpiration and leaf temperature. Annu. Rev. Plant Physiol. 19, 211–238 (1968).

    Article 

    Google Scholar 

  • 5.

    Sack, L. et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat. Commun. 3, 837 (2012).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Sack, L. & Scoffoni, C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198, 983–1000 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Gallaher, T. J. et al. Leaf shape and size track habitat transitions across forest-grassland boundaries in the grass family (Poaceae). Evolution 73, 927–946 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J. Syst. Evol. 55, 259–290 (2017).

    Article 

    Google Scholar 

  • 10.

    Schuepp, P. H. Tansley review no. 59 leaf boundary layers. New Phytol. 125, 477–507 (1993).

    Article 

    Google Scholar 

  • 11.

    Orians, G. H. & Solbrig, O. T. A cost–income model of leaves and roots with special reference to arid and semiarid areas. Am. Nat. 111, 677–690 (1977).

    Article 

    Google Scholar 

  • 12.

    Körner, C. Plant adaptation to cold climates. F1000Res. 5, 2769 (2016).

    Article 

    Google Scholar 

  • 13.

    Niklas, K. J. Plant Allometry: The Scaling of Form and Process (Univ. Chicago Press, 1994).

  • 14.

    Nelson, T. & Dengler, N. Leaf vascular pattern formation. Plant Cell 9, 1121–1135 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Christin, P. A. et al. Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc. Natl Acad. Sci. USA 110, 1381–1386 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Ueno, O., Kawano, Y., Wakayama, M. & Takeda, T. Leaf vascular systems in C3 and C4 grasses: a two-dimensional analysis. Ann. Bot. 97, 611–621 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Sage, R. F. The evolution of C4 photosynthesis. New Phytol. 161, 341–370 (2004).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. GrassBase–The Online World Grass Flora http://www.kew.org/data/grasses-db.html (2006).

  • 19.

    Parkhurst, D. F. & Loucks, O. L. Optimal leaf size in relation to environment. J. Ecol. 60, 505–537 (1972).

    Article 

    Google Scholar 

  • 20.

    Okajima, Y., Taneda, H., Noguchi, K. & Terashima, I. Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecol. Res. 27, 333–346 (2012).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Davis, S. D., Sperry, J. S. & Hacke, U. G. The relationship between xylem conduit diameter and cavitation caused by freezing. Am. J. Bot. 86, 1367–1372 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Blackman, C. J., Brodribb, T. J. & Jordan, G. J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 188, 1113–1123 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Scoffoni, C., Rawls, M., McKown, A., Cochard, H. & Sack, L. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol. 156, 832–843 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Scoffoni, C. et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytol. 213, 1076–1092 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Craine, J. M. et al. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Chang. 3, 63–67 (2013).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Scoffoni, C. et al. Hydraulic basis for the evolution of photosynthetic productivity. Nat. Plants 2, 16072 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Jones, H. G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology 3rd edn (Cambridge Univ. Press, 2014).

  • 28.

    Grace, J. Plant–Atmosphere Relationships 1st edn (Chapman and Hall, 1983).

  • 29.

    Weiser, R. L., Asrar, G., Miller, G. P. & Kanemasu, E. T. Assessing grassland biophysical characteristics from spectral measurements. Remote Sens. Environ. 20, 141–152 (1986).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Meinzer, F. C. & Grantz, D. A. Stomatal control of transpiration from a developing sugarcane canopy. Plant Cell Environ. 12, 635–642 (1989).

    Article 

    Google Scholar 

  • 31.

    Liu, H. et al. Life history is a key factor explaining functional trait diversity among subtropical grasses, and its influence differs between C3 and C4 species. J. Exp. Bot. 70, 1567–1580 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Fort, F., Jouany, C. & Cruz, P. Root and leaf functional trait relations in Poaceae species: Implications of differing resource-acquisition strategies. J. Plant Ecol. 6, 211–219 (2013).

    Article 

    Google Scholar 

  • 33.

    Holloway-Phillips, M. M. & Brodribb, T. J. Contrasting hydraulic regulation in closely related forage grasses: implications for plant water use. Funct. Plant Biol. 38, 594–605 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Brodribb, T. J., Feild, T. S. & Sack, L. Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol. 37, 488–498 (2010).

    Article 

    Google Scholar 

  • 35.

    Linacre, E. T. Further notes on a feature of leaf and air temperatures. Archiv Meteorol. Geophys. Bioklimatol. B 15, 422–436 (1967).

    Article 

    Google Scholar 

  • 36.

    John, G. P. et al. The anatomical and compositional basis of leaf mass per area. Ecol. Lett. 20, 412–425 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Givnish, T. J. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol. 106, 131–160 (1987).

    Article 

    Google Scholar 

  • 38.

    Lusk, C. H., Grierson, E. R. P. & Laughlin, D. C. Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency. New Phytol. 223, 1319–1327 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Niklas, K. J. A mechanical perspective on foliage leaf form and function. New Phytol. 143, 19–31 (1999).

    Article 

    Google Scholar 

  • 41.

    Merkhofer, L. et al. Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics. Am. J. Bot. 102, 1160–1173 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Somerville, C. The billion-ton biofuels vision. Science 312, 1277 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Sedelnikova, O. V., Hughes, T. E. & Langdale, J. A. Understanding the genetic basis of C4 kranz anatomy with a view to engineering C3 crops. Annu. Rev. Genet. 52, 249–270 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Sage, R. F. & Zhu, X. G. Exploiting the engine of C4 photosynthesis. J. Exp. Bot. 62, 2989–3000 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Feldman, A. B. et al. Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. Front. Plant Sci. 8, 1883 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. Camb. Philos. Soc. 93, 1125–1144 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Kluyver, T. A. & Osborne, C. P. Taxonome: a software package for linking biological species data. Ecol. Evol. 3, 1262–1265 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Cayuela, L., Granzow-de la Cerda, I., Albuquerque, F. S. & Golicher, D. J. TAXONSTAND: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).

    Article 

    Google Scholar 

  • 50.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 51.

    Cherlet, M. H. C., Reynolds, J., Hill, J., Sommer, S. & von Maltitz, G. World Atlas of Desertification 3rd edn (Publication Office of the European Union, 2018).

  • 52.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • 53.

    Lasky, J. R. et al. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol. Ecol. 21, 5512–5529 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article 

    Google Scholar 

  • 55.

    Dengler, N. G., Dengler, R. E. & Hattersley, P. W. Differing ontogenetic origins of PCR (Kranz) sheaths in leaf blades of C4 grasses (Poaceae). Am. J. Bot. 72, 284–302 (1985).

    Article 

    Google Scholar 

  • 56.

    Dengler, N. G., Woodvine, M. A., Donnelly, P. M. & Dengler, R. E. Formation of vascular pattern in developing leaves of the C4 grass Arundinella hirta. Int. J. Plant Sci. 158, 1–12 (1997).

    Article 

    Google Scholar 

  • 57.

    Ikenberry, G.-J. J. Developmental Vegetative Morphology of Avena sativa. PhD thesis, Iowa State Univ. (1959).

  • 58.

    Kaufman, P. B. & Brock, T. G. in Oat Science and Technology (eds Marshall, H. G. & Sorrells, M. E.) 53–75 (American Society of Agronomy, 1992).

  • 59.

    Hitch, P. A. & Sharman, B. C. Initiation of procambial strands in leaf primordia of Dactylis glomerata L as an example of a temperate herbage grass. Ann. Bot. 32, 153–164 (1968).

    Article 

    Google Scholar 

  • 60.

    Davidson, J. L. & Milthorpe, F. L. Leaf growth in Dactylis glomerata following defoliation. Ann. Bot. 30, 173–184 (1966).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Volenec, J. J. & Nelson, C. J. Cell dynamics in leaf meristems of contrasting tall fescue genotypes. Crop Sci. 21, 381–385 (1981).

    Article 

    Google Scholar 

  • 62.

    Macadam, J. W. & Nelson, C. J. Specific leaf weight in zones of cell division, elongation and maturation in tall fescue leaf blades. Ann. Bot. 59, 369–376 (1987).

    Article 

    Google Scholar 

  • 63.

    MacAdam, J. W., Volenec, J. J. & Nelson, C. J. Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades. Plant Physiol. 89, 549–556 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Skinner, R. H. & Nelson, C. J. Elongation of the grass leaf and its relationship to the phyllochron. Crop Sci. 35, 4–10 (1995).

    Article 

    Google Scholar 

  • 65.

    Skinner, R. H. & Nelson, C. J. Epidermal cell division and the coordination of leaf and tiller development. Ann. Bot. 74, 9–15 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Maurice, I., Gastal, F. & Durand, J. L. Generation of form and associated mass deposition during leaf development in grasses: a kinematic approach for non-steady growth. Ann. Bot. 80, 673–683 (1997).

    Article 

    Google Scholar 

  • 67.

    Durand, J. L., Schaufele, R. & Gastal, F. Grass leaf elongation rate as a function of developmental stage and temperature: morphological analysis and modelling. Ann. Bot. 83, 577–588 (1999).

    Article 

    Google Scholar 

  • 68.

    Martre, P., Durand, J. L. & Cochard, H. Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytol. 146, 235–247 (2000).

    Article 

    Google Scholar 

  • 69.

    Martre, P. & Durand, J. L. Quantitative analysis of vasculature in the leaves of Festuca arundinacea (Poaceae): Implications for axial water transport. Int. J. Plant Sci. 162, 755–766 (2001).

    Article 

    Google Scholar 

  • 70.

    Gallagher, J. N. Field studies of cereal leaf growth 1. Initiation and expansion in relation to temperature and ontogeny. J. Exp. Bot. 30, 625–636 (1979).

    Article 

    Google Scholar 

  • 71.

    Gallagher, J. N. & Biscoe, P. V. Field studies of cereal leaf growth 3. Barley leaf extension in relation to temperature, orradiance, and water potential. J. Exp. Bot. 30, 645–655 (1979).

    Article 

    Google Scholar 

  • 72.

    Dannenhoffer, J. M., Ebert, W. & Evert, R. F. Leaf vasculature in barley, Hordeum vulgare (Poaceae). Am. J. Bot. 77, 636–652 (1990).

    Article 

    Google Scholar 

  • 73.

    Dannenhoffer, J. M. & Evert, R. F. Development of the vascular system in the leaf of barley (Hordeum vulgare L). Int. J. Plant Sci. 155, 143–157 (1994).

    Article 

    Google Scholar 

  • 74.

    Trivett, C. L. & Evert, R. F. Ontogeny of the vascular bundles and contiguous tissues in the barley leaf blade. Int. J. Plant Sci. 159, 716–723 (1998).

    Article 

    Google Scholar 

  • 75.

    Soper, K. & Mitchell, K. J. The developmental anatomy of perennial ryegrass (Lolium perenne L.). N. Z. J. Sci. Technol. 37, 484–504 (1956).

    Google Scholar 

  • 76.

    Schnyder, H., Nelson, C. J. & Coutts, J. H. Assessment of spatial distribution of growth in the elongation zone of grass leaf blades. Plant Physiol. 85, 290–293 (1987).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Arredondo, J. T. & Schnyder, H. Components of leaf elongation rate and their relationship to specific leaf area in contrasting grasses. New Phytol. 158, 305–314 (2003).

    Article 

    Google Scholar 

  • 78.

    Kaufman, P. B. Development of the shoot of Oryza sativa L. – II. Leaf histogenesis. Phytomorphology 9, 277–311 (1959).

    Google Scholar 

  • 79.

    Yamazaki, K. Studies on the leaf formation in rice plants: I. Observation on the successive development of the leaf. Jpn. J. Crop. Sci. 31, 371–378 (1963).

    Article 

    Google Scholar 

  • 80.

    Chonan, N. K. H. & Matsuda, T. Morphology on vascular bundles of leaves in gramineous crops: I. Observations on vascular bundles of leaf blades, sheaths and internodes in riceplants. Jpn. J. Crop. Sci. 43, 425–432 (1974).

    Article 

    Google Scholar 

  • 81.

    Hoshikawa, K. The Growing Rice Plant: An Anatomical Monograph (Nobunkyo, 1989).

  • 82.

    Matsukura, C. et al. Transverse vein differentiation associated with gas space formation – fate of the middle cell layer in leaf sheath development of rice. Ann. Bot. 85, 19–27 (2000).

    Article 

    Google Scholar 

  • 83.

    Itoh, J. et al. Rice plant development: from zygote to spikelet. Plant Cell Physiol. 46, 23–47 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Sakaguchi, J. & Fukuda, H. Cell differentiation in the longitudinal veins and formation of commissural veins in rice (Oryza sativa) and maize (Zea mays). J. Plant Res. 121, 593–602 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Parent, B., Conejero, G. & Tardieu, F. Spatial and temporal analysis of non-steady elongation of rice leaves. Plant Cell Environ. 32, 1561–1572 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Begg, J. E. & Wright, M. J. Growth and development of leaves from intercalary meristems in Phalaris arundinacea L. Nature 194, 1097–1098 (1962).

    ADS 
    Article 

    Google Scholar 

  • 87.

    Colbert, J. T. & Evert, R. F. Leaf vasculature in sugarcane (Saccharum officinarum L.). Planta 156, 136–151 (1982).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Bernstein, N., Silk, W. K. & Lauchli, A. Growth and development of sorghum leaves under conditions of NaCl stress – spatial and temporal aspects of leaf growth inhibition. Planta 191, 433–439 (1993).

    CAS 
    Article 

    Google Scholar 

  • 89.

    Sud, R. M. & Dengler, N. G. Cell lineage of vein formation in variegated leaves of the C4 grass Stenotaphrum secundatum. Ann. Bot. 86, 99–112 (2000).

    Article 

    Google Scholar 

  • 90.

    Sharman, B. C. & Hitch, P. A. Initiation of procambial strands in leaf primordia of bread wheat Triticum aestivum L. Ann. Bot. 31, 229–243 (1967).

    Article 

    Google Scholar 

  • 91.

    Blackman, E. The morphology and development of cross veins in the leaves of bread wheat (Triticum aestivum L.). Ann. Bot. 35, 653–665 (1971).

    Article 

    Google Scholar 

  • 92.

    Kemp, D. R. The location and size of the extension zone of emerging wheat leaves. New Phytol. 84, 729–737 (1980).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Paolillo, D. J. Protoxylem maturation in the seedling leaf of wheat. Am. J. Bot. 82, 337–345 (1995).

    Article 

    Google Scholar 

  • 94.

    Beemster, G. T. S. & Masle, J. The role of apical development around the time of leaf initiation in determining leaf width at maturity in wheat seedlings (Triticum aestivum L.) with impeded roots. J. Exp. Bot. 47, 1679–1688 (1996).

    CAS 
    Article 

    Google Scholar 

  • 95.

    Sharman, B. C. Developmental anatomy of the shoot of Zea mays L. Ann. Bot. 6, 245–282 (1942).

    Article 

    Google Scholar 

  • 96.

    Esau, K. Ontogeny of the vascular bundle in Zea mays. Hilgardia 15, 325–368 (1943).

    Article 

    Google Scholar 

  • 97.

    Bosabalidis, A. M., Evert, R. F. & Russin, W. A. Ontogeny of the vascular bundles and contiguous tissues in the maize leaf blade. Am. J. Bot. 81, 745–752 (1994).

    Article 

    Google Scholar 

  • 98.

    Poethig, S. in Contemporary Problems in Plant Anatomy (eds Dickison R. A. & White, W. C.) 235–259 (Academic, 1984).

  • 99.

    Russell, S. H. & Evert, R. F. Leaf vasculature in Zea mays L. Planta 164, 448–458 (1985).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Smith, L. G., Greene, B., Veit, B. & Hake, S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116, 21–30 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Fournier, C. & Andrieu, B. A 3D architectural and process-based model of maize development. Ann. Bot. 81, 233–250 (1998).

    Article 

    Google Scholar 

  • 102.

    Muller, B., Reymond, M. & Tardieu, F. The elongation rate at the base of a maize leaf shows an invariant pattern during both the steady-state elongation and the establishment of the elongation zone. J. Exp. Bot. 52, 1259–1268 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 103.

    Muller, B. et al. Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol. 143, 278–290 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Johnston, R., Leiboff, S. & Scanlon, M. J. Ontogeny of the sheathing leaf base in maize (Zea mays). New Phytol. 205, 306–315 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Ben-Haj-Salah, H. & Tardieu, F. Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length – analysis of the coordination between cell division and cell expansion. Plant Physiol. 109, 861–870 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 106.

    Tardieu, F., Reymond, M., Hamard, P., Granier, C. & Muller, B. Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. J. Exp. Bot. 51, 1505–1514 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Runions, A. et al. Modeling and visualization of leaf venation patterns. ACM Trans. Graphic. 24, 702–711 (2005).

    Article 

    Google Scholar 

  • 108.

    Scarpella, E. & Meijer, A. H. Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 164, 209–242 (2004).

    CAS 
    Article 

    Google Scholar 

  • 109.

    Baskin, T. I. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell. Dev. 21, 203–222 (2005).

    CAS 
    Article 

    Google Scholar 

  • 110.

    Fujita, H. & Mochizuki, A. The origin of the diversity of leaf venation pattern. Dev. Dyn. 235, 2710–2721 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 111.

    Granier, C. & Tardieu, F. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant Cell Environ. 32, 1175–1184 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 112.

    Scarpella, E., Barkoulas, M. & Tsiantis, M. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2, a001511 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Gázquez, A. & Beemster, G. T. S. What determines organ size differences between species? A meta-analysis of the cellular basis. New Phytol. 215, 299–308 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 114.

    Scarpella, E. The logic of plant vascular patterning. Polarity, continuity and plasticity in the formation of the veins and of their networks. Curr. Opin. Genet. Dev. 45, 34–43 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 115.

    Berlyn, G. P. M. J. P. Botanical Microtechnique and Cytochemistry (Iowa State Univ. Press, 1976).

  • 116.

    Kemp, C. D. Methods of estimating leaf area of grasses from linear measurements. Ann. Bot. 24, 491–499 (1960).

    Article 

    Google Scholar 

  • 117.

    Stickler, F. C., Wearden, S. & Pauli, A. W. Leaf area determination in grain sorghum. Agronony 53, 187–188 (1961).

    Article 

    Google Scholar 

  • 118.

    Shi, P. et al. Leaf area–length allometry and its implications in leaf shape evolution. Trees 33, 1073–1085 (2019).

    Article 

    Google Scholar 

  • 119.

    Ellis, R. P. A procedure for standardizing comparative leaf anatomy in the Poaceae. I. The leaf blade as viewed in transverse section. Bothalia 12, 65–109 (1976).

    Article 

    Google Scholar 

  • 120.

    Evert, R. F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development (John Wiley, 2006).

  • 121.

    Neufeld, H. S. et al. Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiol. 100, 1020–1028 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 122.

    Tyree, M. T., Zimmermann, M. H. & Zimmermann, M. H. Xylem Structure and the Ascent of Sap 2nd edn (Springer, 2002).

  • 123.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 124.

    Grass Phylogeny Working Group II. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 193, 304–312 (2012).

    Article 

    Google Scholar 

  • 125.

    Taylor, S. H. et al. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytol. 193, 387–396 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 126.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 127.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 128.

    Christin, P. A. et al. Molecular dating, evolutionary rates, and the age of the grasses. Syst. Biol. 63, 153–165 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 129.

    Prasad, V. et al. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nat. Commun. 2, 480 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 130.

    R Core Team. R: A Language and Environment for Statistical Computing, http://www.R-project.org/ (R Foundation for Statistical Computing, 2019).

  • 131.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 132.

    Spriggs, E. L., Christin, P.-A. & Edwards, E. J. Data from: C4 photosynthesis promoted species diversification during the Miocene grassland expansion, https://doi.org/10.5061/dryad.74b5d (2015).

  • 133.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article 

    Google Scholar 

  • 134.

    Schmerler, S. B. et al. Evolution of leaf form correlates with tropical-temperate transitions in Viburnum (Adoxaceae). Proc. R. Soc. B. 279, 3905–3913 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 135.

    Fletcher, L. R. et al. Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. Am. J. Bot. 105, 1672–1687 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 136.

    Bramer, I. et al. in Next Generation Biomonitoring: Part 1 (Advances in Ecological Research, volume 58) (eds. Bohan, D. A. et al.) 101–161 (Academic, 2018).

  • 137.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 138.

    Watcharamongkol, T., Christin, P. A. & Osborne, C. P. C. C4 photosynthesis evolved in warm climates but promoted migration to cooler ones. Ecol. Lett. 21, 376–383 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 139.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference 2nd edn (Springer, 2002).

  • 140.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).

  • 141.

    Faraway, J. J. Linear Models with R (Chapman & Hall, 2009).

  • 142.

    Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 143.

    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 144.

    Grubb, P. J. Trade-offs in interspecific comparisons in plant ecology and how plants overcome proposed constraints. Plant Ecol. Divers. 9, 3–33 (2016).

    Article 

    Google Scholar 

  • 145.

    Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 (2003).

    Article 

    Google Scholar 

  • 146.

    Grubb, P. J., Coomes, D. A. & Metcalfe, D. J. Comment on “A brief history of seed size”. Science 310, 783 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 147.

    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).

    Article 

    Google Scholar 

  • 148.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 149.

    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 150.

    Pinheiro, J. et al. nlme: linear and nonlinear mixed effect models. R package version 3.1-140, https://CRAN.R-project.org/package=nlme (2019).

  • 151.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • 152.

    Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc. 81, 259–291 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 153.

    Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic analysis of covariance by computer-simulation. Syst. Biol. 42, 265–292 (1993).

    Article 

    Google Scholar 

  • 154.

    Gross, J. & Ligges, U. nortest: tests for normality. R package version 1.0-4, https://cran.r-project.org/package=nortest (2015).

  • 155.

    Poorter, H. & Sack, L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3, 259 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 156.

    Smith, R. J. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140, 476–486 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 157.

    Gates, D. M. Energy, plants, and ecology. Ecology 46, 1–13 (1965).

    Article 

    Google Scholar 

  • 158.

    Lusk, C. H. et al. Frost and leaf-size gradients in forests: global patterns and experimental evidence. New Phytol. 219, 565–573 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 159.

    Muir, C. D. tealeaves: an R package for modelling leaf temperature using energy budgets. AoB Plants 11, plz054 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 160.

    Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 161.

    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 162.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 163.

    Bernacchi, C. J., Pimentel, C. & Long, S. P. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ. 26, 1419–1430 (2003).

    CAS 
    Article 

    Google Scholar 

  • 164.

    Muir, C. D. Making pore choices: repeated regime shifts in stomatal ratio. Proc. R. Soc. B. 282, 1–9 (2012).

    Google Scholar 

  • 165.

    Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (Hunt Institute for Botanical Documentation, 2001).



  • Source link

    Leave a Reply

    Your email address will not be published.