Blum, J. & Wurm, G. The growth mechanisms of macroscopic bodies in protoplanetary disks. Annu. Rev. Astron. Astrophys. 46, 21–56 (2008).
Google Scholar
Okuzumi, S., Tanaka, H., Kobayashi, H. & Wada, K. Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752, 106 (2012).
Google Scholar
Penteado, E. M., Walsh, C. & Cuppen, H. M. Sensitivity analysis of grain surface chemistry to binding energies of ice species. Astrophys. J. 844, 71 (2017).
Google Scholar
Lecar, M., Podolak, M., Sasselov, D. & Chiang, E. On the location of the snow line in a protoplanetary disk. Astrophys. J. 640, 1115–1118 (2006).
Google Scholar
Carr, J. S., Najita, J. R. & Salyk, C. Measuring the water snow line in a protoplanetary disk. Res. Notes. Am. Astron. Soc. 2, 169 (2018).
Google Scholar
Cieza, L. A. et al. Imaging the water snow-line during a protostellar outburst. Nature 535, 258–261 (2016).
Google Scholar
Strom, K. M. & Strom, S. E. The discovery of two FU orionis objects in L1641. Astrophys. J. L. 412, L63 (1993).
Google Scholar
Furlan, E. et al. The Herschel Orion protostar survey: spectral energy distributions and fits using a grid of protostellar models. Astrophys. J. Supp. 224, 5 (2016).
Google Scholar
van ’t Hoff, M. L. R. et al. Methanol and its relation to the water snowline in the disk around the young outbursting star V883 Ori. Astrophys. J. L. 864, L23 (2018).
Google Scholar
Leemker, M. et al. Chemically tracing the water snowline in protoplanetary disks with HCO+. Astron. Astrophys. 646, A3 (2021).
Google Scholar
Kounkel, M. et al. The APOGEE-2 survey of the Orion star-forming complex. II. Six-dimensional structure. Astron. J. 156, 84 (2018).
Google Scholar
ALMA Partnership. The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. L. 808, L3 (2015).
Google Scholar
Sheehan, P. D., Tobin, J. J., Looney, L. L. & Megeath S. T. The VLA/ALMA nascent disk and multiplicity (VANDAM) survey of Orion protostars VI. Insights from radiative transfer modeling. Astrophys. J. 929, 76S (2022).
Pickering, E. C. Detection of new nebulae by photography. Ann. Harvard College Observ. 18, 113–117 (1890).
Google Scholar
Lee, J.-E. et al. The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nat. Astron. 3, 314–319 (2019).
Google Scholar
Collings, M. P. et al. A laboratory survey of the thermal desorption of astrophysically relevant molecules. Mon. Not. R. Astron. Soc. 354, 1133–1140 (2004).
Google Scholar
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P. Protoplanetary disk structures in Ophiuchus. II. Extension to fainter sources. Astrophys. J. 723, 1241–1254 (2010).
Google Scholar
van Dishoeck, E. F. et al. Water in star-forming regions: physics and chemistry from clouds to disks as probed by Herschel spectroscopy. Astron. Astrophys. 648, A24 (2021).
Google Scholar
Tielens, A. G. G. M. Surface chemistry of deuterated molecules. Astron. Astrophys. 119, 177–184 (1983).
Google Scholar
Parise, B. et al. Search for solid HDO in low-mass protostars. Astron. Astrophys. 410, 897–904 (2003).
Google Scholar
Persson, M. V., Jørgensen, J. K., van Dishoeck, E. F. & Harsono, D. The deuterium fractionation of water on solar-system scales in deeply-embedded low-mass protostars. Astron. Astrophys. 563, A74 (2014).
Google Scholar
Jensen, S. S. et al. ALMA observations of water deuteration: a physical diagnostic of the formation of protostars. Astron. Astrophys. 631, A25 (2019).
Google Scholar
Jensen, S. S. et al. ALMA observations of doubly deuterated water: inheritance of water from the prestellar environment. Astron. Astrophys. 650, A172 (2021).
Google Scholar
Altwegg, K. et al. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015).
Google Scholar
Altwegg, K., Balsiger, H. & Fuselier, S. A. Cometary chemistry and the origin of icy solar system bodies: the view after Rosetta. Annu. Rev. Astron. Astrophys. 57, 113–155 (2019).
Google Scholar
Altwegg, K. et al. D2O and HDS in the coma of 67P/Churyumov-Gerasimenko. Philos. Trans. R. Soc. London Ser. A. 375, 20160253 (2017).
Google Scholar
Owen, J. E. & Jacquet, E. Astro- and cosmochemical consequences of accretion bursts – I. The D/H ratio of water. Mon. Not. R. Astron. Soc. 446, 3285–3296 (2015).
Google Scholar
Lécluse, C. & Robert, François Hydrogen isotope exchange reaction rates: origin of water in the inner solar system. Geochim. Cosmochim. Acta 58, 2927–2939 (1994).
Google Scholar
Cleeves, L. I. et al. The ancient heritage of water ice in the solar system. Science 345, 1590–1593 (2014).
Google Scholar
Furuya, K., van Dishoeck, E. F. & Aikawa, Y. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores. Astron. Astrophys. 586, A127 (2016).
Google Scholar
Furuya, K. et al. Water delivery from cores to disks: deuteration as a probe of the prestellar inheritance of H2O. Astron. Astrophys. 599, A40 (2017).
Google Scholar
Sakai, N. et al. Change in the chemical composition of infalling gas forming a disk around a protostar. Nature 507, 78–80 (2014).
Google Scholar
Visser, R., van Dishoeck, E. F., Doty, S. D. & Dullemond, C. P. The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009).
Google Scholar
Drozdovskaya, M. N., Walsh, C., Visser, R., Harsono, D. & van Dishoeck, E. F. Methanol along the path from envelope to protoplanetary disc. Mon. Not. R. Astron. Soc. 445, 913–929 (2014).
Google Scholar
O’Brien, D. P., Izidoro, A., Jacobson, S. A., Raymond, S. N. & Rubie, D. C. The delivery of water during terrestrial planet formation. Space Sci. Rev. 214, 47 (2018).
Google Scholar
McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI Vol. 376, Proc. Astronomical Society of the Pacific Conference Series (eds Shaw, R. A. et al.) 127 (Astron. Soc. Pacific, 2007).
Teague, R. richteague/keplerian_mask: initial release. Zenodo https://doi.org/10.5281/zenodo.4321137 (2020).
Teague, R. & Foreman-Mackey, D. A robust method to measure centroids of spectral lines. Rese. Notes Am. Astron. Soc. 2, 173 (2018).
Google Scholar
Teague, R. Statistical uncertainties in moment maps of line emission. Res. Notes Am. Astron. Soc. 3, 74 (2019).
Google Scholar
Yen, H.-W. et al. Stacking spectra in protoplanetary disks: detecting intensity profiles from hidden molecular lines in HD 163296. Astrophys. J. 832, 204 (2016).
Google Scholar
Ginsburg, A., Bally, J., Goddi, C., Plambeck, R. & Wright, M. A Keplerian disk around Orion SrCI, a ~15 M⊙ YSO. Astrophys. J. 860, 119 (2018).
Google Scholar
Brinch, C. & Hogerheijde, M. R. LIME – a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths. Astron. Astrophys. 523, A25 (2010).
Google Scholar
Möller, T., Endres, C. & Schilke, P. eXtended CASA line analysis software suite (XCLASS). Astron. Astrophys. 598, A7 (2017).
Google Scholar
Goldsmith, P. F. & Langer, W. D. Population diagram analysis of molecular line emission. Astrophys. J. 517, 209–225 (1999).
Google Scholar
Pickett, H. M. et al. Submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
Google Scholar
Cheng, Y. C. et al. Water ortho-to-para ratio in the coma of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 663, A43 (2022).
Google Scholar
Hama, T., Kouchi, A. & Watanabe, N. Statistical ortho-to-para ratio of water desorbed from ice at 10 Kelvin. Science 351, 65–67 (2016).
Google Scholar
Wilson, T. L. & Rood, R. Abundances in the interstellar medium. Annu. Rev. Astron. Astrophys. 32, 191–226 (1994).
Google Scholar
Altwegg, K. et al. Molecule-dependent oxygen isotopic ratios in the coma of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 498, 5855–5862 (2020).
Google Scholar
Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F. & Black, J. H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 432, 369–379 (2005).
Google Scholar
Faure, A., Wiesenfeld, L., Scribano, Y. & Ceccarelli, C. Rotational excitation of mono- and doubly-deuterated water by hydrogen molecules. Mon. Not. R. Astron. Soc. 420, 699–704 (2012).
Google Scholar
Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011).
Google Scholar
Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010).
Google Scholar
Desch, S. J., Young, E. D., Dunham, E. T., Fujimoto, Y. & Dunlap, D. R. Short-lived radionuclides in meteorites and the Sun’s birth environment. Preprint at https://arxiv.org/abs/2203.11169 (2022).
Pfalzner, S. & Vincke, K. Cradle(s) of the Sun. Astrophys. J. 897, 60 (2020).
Google Scholar
Robitaille, T. & Bressert, E. APLpy: astronomical plotting library in Python. Astrophysics Source Code Library, record ascl:1208.017 (ASCL, 2012).
Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Greenfield, P. et al. Astropy: community Python library for astronomy (ASCL, 2013).
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography: guidelines for effective and accurate colormap selection. Oceanography 29, 9–13 (2016).
Google Scholar
Hagemann, R., Nief, G. & Roth, E. Absolute isotopic scale for deuterium analysis of natural waters. absolute D/H ratio for smow. Tellus 22, 712–715 (1970).
Google Scholar
de Laeter, J. R. et al. Atomic weights of the elements. Review 2000 (IUPAC technical report). Pure Appl. Chem. 75, 683–800 (2003).
Google Scholar
Brown, R. H., Lauretta, D. S., Schmidt, B. & Moores, J. Experimental and theoretical simulations of ice sublimation with implications for the chemical, isotopic, and physical evolution of icy objects. Planetary Space Sci. 60, 166–180 (2012).
Google Scholar
Bockelée-Morvan, D. et al. Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133, 147–162 (1998).
Google Scholar
Meier, R. et al. A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). Science 279, 842 (1998).
Google Scholar
Gibb, E. L. et al. Chemical composition of comet C/2007 N3 (Lulin): another ‘atypical’ comet. Astrophys. J. 750, 102 (2012).
Google Scholar
Villanueva, G. L. et al. A sensitive search for deuterated water in comet 8p/Tuttle. Astrophys. J. L. 690, L5–L9 (2009).
Google Scholar
Bockelée-Morvan, D. et al. Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 544, L15 (2012).
Google Scholar
Hutsemékers, D., Manfroid, J., Jehin, E., Zucconi, J. M. & Arpigny, C. The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR). Astron. Astrophys. 490, L31–L34 (2008).
Google Scholar
Biver, N. et al. Radio wavelength molecular observations of comets C/1999 T1 (McNaught-Hartley), C/2001 A2 (LINEAR), C/2000 WM1 (LINEAR) and 153P/Ikeya-Zhang. Astron. Astrophys. 449, 1255–1270 (2006).
Google Scholar
Biver, N. et al. Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy). Astron. Astrophys. 589, A78 (2016).
Google Scholar
Lis, D. C. et al. A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková and prospects for D/H measurements with CCAT. Astrophys. J. L. 774, L3 (2013).
Google Scholar
Hartogh, P. et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011).
Google Scholar
Lis, D. C. et al. Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets. Astron. Astrophys. 625, L5 (2019).
Google Scholar