Strange IndiaStrange India


  • 1.

    Zallen, R. The Physics of Amorphous Solids (Wiley, 1998).

  • 2.

    Elliott, S. R. Physics of Amorphous Materials (Longman Scientific & Technical, 1990).

  • 3.

    Andrady, A. L. & Neal, M. A. Applications and societal benefits of plastics. Phil. Trans. R. Soc. B 364, 1977–1984 (2009).

    CAS 

    Google Scholar 

  • 4.

    Carlson, D. E. & Wronski, C. R. Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

    CAS 

    Google Scholar 

  • 6.

    Bernal, J. D. & Mason, J. Packing of spheres: co-ordination of randomly packed spheres. Nature 188, 910–911 (1960).

    ADS 

    Google Scholar 

  • 7.

    Scott, G. D. Packing of equal spheres. Nature 188, 908–909 (1960).

    ADS 
    MATH 

    Google Scholar 

  • 8.

    Finney, J. L. Random packings and structure of simple liquids. I. Geometry of random close packing. Proc. R. Soc. Lond. A 319, 479–493 (1970).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Nelson, D. R. & Spaepen, F. Polytetrahedral order in condensed matter. Solid State Phys. 42, 1–90 (1989).

    CAS 

    Google Scholar 

  • 10.

    Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Miracle, D. B., Egami, T., Flores, K. M. & Kelton, K. F. Structural aspects of metallic glasses. MRS Bull. 32, 629–634 (2007).

    CAS 

    Google Scholar 

  • 13.

    Cheng, Y. Q. & Ma, E. Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379–473 (2011).

    CAS 

    Google Scholar 

  • 14.

    Miracle, D. B. A physical model for metallic glass structures: an introduction and update. JOM 64, 846–855 (2012).

    CAS 

    Google Scholar 

  • 15.

    Hirata, A. et al. Geometric frustration of icosahedron in metallic glasses. Science 341, 376–379 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Chen, M. W. A brief overview of bulk metallic glasses. NPG Asia Mater. 3, 82–90 (2011).

    Google Scholar 

  • 17.

    Klement Jun, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960).

    ADS 

    Google Scholar 

  • 18.

    Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Peker, A. & Johnson, W. L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342–2344 (1993).

    ADS 

    Google Scholar 

  • 20.

    Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Wang, W. H., Dong, C. & Shek C. H. Bulk metallic glasses. Mater. Sci. Eng. Rep. 44, 45–89 (2004).

    Google Scholar 

  • 22.

    Giacovazzo, C. et al. Fundamentals of Crystallography 3rd edn (Oxford Univ. Press, 2011).

  • 23.

    Egami, T. & Billinge, S. J. L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon, 2003).

  • 24.

    Kelton, K. F. et al. First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 26.

    Hwang, J. et al. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys. Rev. Lett. 108, 195505 (2012).

    ADS 

    Google Scholar 

  • 27.

    Hirata, A. et al. Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28–33 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Pekin, T. C. et al. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass. Nat. Commun. 10, 2445 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Tang, X. P., Geyer, U., Busch, R., Johnson, W. L. & Wu, Y. Diffusion mechanisms in metallic supercooled liquids and glasses. Nature 402, 160–162 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Sachdev, S. & Nelson, D. R. Order in metallic glasses and icosahedral crystals. Phys. Rev. B 32, 4592–4606 (1985).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Tang, C. & Harrowell, P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nat. Mater. 12, 507–511 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 32.

    Cheng, Y. Q., Ma, E. & Sheng, H. W. Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 102, 245501 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Hu, Y. C., Li, F. X., Li, M. Z., Bai, H. Y. & Wang, W. H. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nat. Commun. 6, 8310 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Ding, J. & Ma, E. Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids. npj Comput. Mater 3, 9 (2017).

    ADS 

    Google Scholar 

  • 35.

    Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Miao, J., Ercius, P. & Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

    Google Scholar 

  • 37.

    Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Goris, B. et al. Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals. Nano Lett. 13, 4236–4241 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Xu, R. et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14, 1099–1103 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Haberfehlner, G. et al. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography. Nat. Commun. 6, 8779 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Yang, Y. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Tian, X. et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 19, 867–873 (2020).

    CAS 

    Google Scholar 

  • 43.

    Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 45.

    Kim, J. Y. et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass. Acta Mater. 155, 350–361 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    Liu, X. J. et al. Metallic liquids and glasses: atomic order and global packing. Phys. Rev. Lett. 105, 155501 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 47.

    Wu, Z. W., Li, M. Z., Wang, W. H. & Liu, K. X. Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nat. Commun. 6, 6035 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 48.

    Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977).

    CAS 

    Google Scholar 

  • 49.

    Argon, A. S. Plastic-deformation in metallic glasses. Acta Metall. 27, 47–58 (1979).

    CAS 

    Google Scholar 

  • 50.

    Johnson, W. L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81–134 (1986).

    CAS 

    Google Scholar 

  • 51.

    Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Xu, Z., Sun, H., Zhao, X. & Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25, 188–193 (2013).

    CAS 

    Google Scholar 

  • 53.

    Takeuchi, A. & Inoue, A. Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng. A 304–306, 446–451 (2001).

    Google Scholar 

  • 54.

    Bordeenithikasem, P. et al. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing. Sci. Rep. 7, 7155 (2017); author correction 8, 17898 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Ercius, P., Boese, M., Duden, T. & Dahmen, U. Operation of TEAM I in a user environment at NCEM. Microsc. Microanal. 18, 676–683 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Lewis, J. P. Fast normalized cross-correlation. In Vision Interface 1995 120–123 (1995).

  • 57.

    Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

    ADS 
    MathSciNet 

    Google Scholar 

  • 58.

    Miao, J., Sayre, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transform of non-periodic objects. J. Opt. Soc. Am. A 15, 1662–1669 (1998).

    ADS 

    Google Scholar 

  • 59.

    Pryor, A. et al. GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci. Rep. 7, 10409 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).

    CAS 

    Google Scholar 

  • 61.

    Rogers, S. S., Waigh, T. A., Zhao, X. & Lu, J. R. Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Phys. Biol. 4, 220–227 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 62.

    Brünger, A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Google Scholar 

  • 63.

    Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982).

    MathSciNet 
    MATH 

    Google Scholar 

  • 64.

    Pryor, A., Ophus, C. & Miao, J. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy. Adv. Struct. Chem. Imaging 3, 15 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    ADS 
    CAS 

    Google Scholar 

  • 66.

    Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    ADS 

    Google Scholar 

  • 67.

    Yu, H. B. & Samwer, K. Atomic mechanism of internal friction in a model metallic glass. Phys. Rev. B 90, 144201 (2014).

    ADS 

    Google Scholar 

  • 68.

    Warren, B. E. X-Ray Diffraction (Dover Publications, 1990).

  • 69.

    Cowley, J. M. X‐Ray measurement of order in single crystals of Cu3Au. J. Appl. Phys. 21, 24–30 (1950).

    ADS 
    CAS 

    Google Scholar 

  • 70.

    Lee, C. Y. An algorithm for path connections and its applications. IEEE Trans. Electron. Comput. EC-10, 346–365 (1961).

    MathSciNet 

    Google Scholar 

  • 71.

    Larsen, P. M., Schmidt, S. & Schiøtz, J. Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sci. Eng. 24, 055007 (2016).

    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *