Strange India All Strange Things About India and world


  • 1.

    Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Hsieh, T. S., Fudenberg, G., Goloborodko, A. & Rando, O. J. Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome. Nat. Methods 13, 1009–1011 (2016).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Hsieh, T. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553.e8 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).

    CAS 
    Article 

    Google Scholar 

  • 7.

    van de Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).

    Article 

    Google Scholar 

  • 8.

    Davies, J. O. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Davies, J. O., Oudelaar, A. M., Higgs, D. R. & Hughes, J. R. How best to identify chromosomal interactions: a comparison of approaches. Nat. Methods 14, 125–134 (2017).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Tan-Wong, S. M. et al. Gene loops enhance transcriptional directionality. Science 338, 671–675 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Hanssen, L. L. P. et al. Tissue-specific CTCF–cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat. Cell Biol. 19, 952–961 (2017).

    CAS 
    Article 

    Google Scholar 

  • 15.

    .Hentges, L. D., Sergeant, M. J., Downes, D. J., Hughes, J. R. & Taylor, S. LanceOtron: a deep learning peak caller for ATAC-seq, ChIP-seq, and DNase-seq. Preprint at https://doi.org/10.1101/2021.01.25.428108 (2021).

  • 16.

    He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395–401 (2015).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Oudelaar, A. M. et al. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50, 1744–1751 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Hay, D. et al. Genetic dissection of the α-globin super-enhancer in vivo. Nat. Genet. 48, 895–903 (2016).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protocols 8, 2281–2308 (2013).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Trakarnsanga, K. et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat. Commun. 8, 14750 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Mettananda, S. et al. Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia. Nat. Commun. 8, 424 (2017).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Bak, R. O., Dever, D. P. & Porteus, M. H. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat. Protocols 13, 358–376 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Scott, C. et al. Recapitulation of erythropoiesis in congenital dyserythropoietic anaemia type I (CDA-I) identifies defects in differentiation and nucleolar abnormalities. Haematologica https://doi.org/10.3324/haematol.2020.260158 (2020).

  • 26.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article 

    Google Scholar 

  • 27.

    Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Telenius, J. & Hughes, J. R. NGseqBasic – a single-command UNIX tool for ATAC-seq, DNaseI-seq, Cut-and-Run, and ChIP-seq data mapping, high-resolution visualisation, and quality control. Preprint at https://doi.org/10.1101/393413 (2018).

  • 32.

    Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protocols 7, 1728–1740 (2012).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Zacher, B. et al. Accurate promoter and enhancer identification in 127 ENCODE and Roadmap Epigenomics cell types and tissues by GenoSTAN. PLoS ONE 12, e0169249 (2017).

    Article 

    Google Scholar 

  • 34.

    Fisher, R. A. Statistical Methods for Research Workers 5th edn (Oliver and Boyd, 1932).

  • 35.

    Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Kowalczyk, M. S. et al. Intragenic enhancers act as alternative promoters. Mol. Cell 45, 447–458 (2012).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Pope, B. D. et al. Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402–405 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Hosseini, M. et al. Causes and consequences of chromatin variation between inbred mice. PLoS Genet. 9, e1003570 (2013).

    CAS 
    Article 

    Google Scholar 

  • 41.

    The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    ADS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *