Strange IndiaStrange India


  • Kopylova, M. G. & Caro, G. Mantle xenoliths from the southeastern Slave craton: evidence for chemical zonation in a thick, cold lithosphere. J. Petrol. 45, 1045–1067 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Begg, G. C. et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5, 23–50 (2009).

    Article 
    ADS 

    Google Scholar 

  • Griffin, W. et al. The origin and evolution of Archean lithospheric mantle. Precambrian Res. 127, 19–41 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Canil, D. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77, 375–393 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brey, G. P. & Shu, Q. The birth, growth and ageing of the Kaapvaal subcratonic mantle. Mineral. Petrol. 112, 23–41 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pearson, D. G. et al. Deep continental roots and cratons. Nature 596, 199–210 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wittig, N. et al. Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet. Sci. Lett. 274, 24–33 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 159, 1–12 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lee, C.-T. A. & Chin, E. J. Calculating melting temperatures and pressures of peridotite protoliths: implications for the origin of cratonic mantle. Earth Planet. Sci. Lett. 403, 273–286 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Boyd, F. R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15–26 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Robin-Popieul, C. C. et al. A new model for Barberton komatiites: deep critical melting with high melt retention. J. Petrol. 53, 2191–2229 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wilson, A. H. The late-Paleoarchean ultra-depleted Commondale komatiites: Earth’s hottest lavas and consequences for eruption. J. Petrol. 60, 1575–1620 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Davies, G. F. Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett. 275, 382–392 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pearson, D. G. & Wittig, N. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. 165, 895–914 (2008).

    Article 
    ADS 

    Google Scholar 

  • Kamber, B. S. & Tomlinson, E. L. Petrological, mineralogical and geochemical peculiarities of Archaean cratons. Chem. Geol. 511, 123–151 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Takahashi, E. & Scarfe, C. M. Melting of peridotite to 14 GPa and the genesis of komatiite. Nature 315, 566–568 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. Solid Earth 97, 4521–4540 (1992).

    Article 
    CAS 

    Google Scholar 

  • Simon, N. S. C., Carlson, R. W., Pearson, D. G. & Davies, G. R. The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J. Petrol. 48, 589–625 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schulze, D. J. A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71, 195–213 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Holland, T. J. B., Green, E. C. R. & Powell, R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. J. Petrol. 59, 881–900 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tomlinson, E. L. & Holland, T. J. A thermodynamic model for the subsolidus evolution and melting of peridotite. J. Petrol. 62, egab012 (2021).

    Article 

    Google Scholar 

  • Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schmeling, H. & Arndt, N. Modelling komatiitic melt accumulation and segregation in the transition zone. Earth Planet. Sci. Lett. 472, 95–106 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tomlinson, E. L. & Kamber, B. S. Depth-dependent peridotite-melt interaction and the origin of variable silica in the cratonic mantle. Nat. Commun. 12, 1082 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grütter, H. S., Gurney, J. J., Menzies, A. H. & Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77, 841–857 (2004).

    Article 
    ADS 

    Google Scholar 

  • Stachel, T. & Harris, J. The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol. Rev. 34, 5–32 (2008).

    Article 

    Google Scholar 

  • Zou, H. & Reid, M. R. Quantitative modeling of trace element fractionation during incongruent dynamic melting. Geochim. Cosmochim. Acta 65, 153–162 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pokhilenko, N. P., Pearson, D. G., Boyd, F. R. & Sobolev, N. V. Megacrystalline dunites and peridotites: hosts for Siberian diamonds. Ann. Rep. Dir. Geophys. Lab. 11–18 (1991).

  • Viljoen, K., Swash, P., Otter, M., Schulze, D. & Lawless, P. Diamondiferous garnet harzburgites from the Finsch kimberlite, Northern Cape, South Africa. Contrib. Mineral. Petrol. 110, 133–138 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sproule, R. A., Lesher, C. M., Ayer, J. A., Thurston, P. C. & Herzberg, C. T. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Res. 115, 153–186 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wilson, A. & Bolhar, R. Olivine in komatiite records origin and travel from the deep upper mantle. Geology 50, 351–355 (2021).

    Article 
    ADS 

    Google Scholar 

  • McKenzie, D. Speculations on the generation and movement of komatiites. J. Petrol. 61, egaa061 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Canil, D. & O’Neill, H. S. C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McCammon, C. & Kopylova, M. A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Mineral. Petrol. 148, 55–68 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McCammon, C., Griffin, W. L., Shee, S. & O’Neill, H. S. C. Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib. Mineral. Petrol. 141, 287 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nimis, P., Preston, R., Perritt, S. H. & Chinn, I. L. Diamond’s depth distribution systematics. Lithos 376–377, 105729 (2020).

    Article 

    Google Scholar 

  • Shu, Q. & Brey, G. P. Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett. 418, 27–39 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hoare, B. C., Tomlinson, E. L. & Kamber, B. S. Evidence for a very thick Kaapvaal craton root: implications for equilibrium fossil geotherms in the early continental lithosphere. Earth Planet. Sci. Lett. 597, 117796 (2022).

    Article 
    CAS 

    Google Scholar 

  • Moore, W. B. & Webb, A. A. G. Heat-pipe earth. Nature 501, 501–505 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nesbitt, R., Sun, S.-S. & Purvis, A. Komatiites; geochemistry and genesis. Can. Mineral. 17, 165–186 (1979).

    CAS 

    Google Scholar 

  • Powell, R. & Holland, T. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol. 6, 173–204 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lexa, O. pypsbuilder, https://pypsbuilder.readthedocs.io/en/latest/index.html (2020).

  • Palin, R. M. et al. High‐grade metamorphism and partial melting of basic and intermediate rocks. J. Metamorph. Geol. 34, 871–892 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kendrick, J. & Yakymchuk, C. Garnet fractionation, progressive melt loss and bulk composition variations in anatectic metabasites: complications for interpreting the geodynamic significance of TTGs. Geosci. Front. 11, 745–763 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hernández-Montenegro, J. D., Palin, R. M., Zuluaga, C. A. & Hernández-Uribe, D. Archean continental crust formed by magma hybridization and voluminous partial melting. Sci. Rep. 11, 5263 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, E. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J. Geophys. Res. Solid Earth 91, 9367–9382 (1986).

    Article 
    CAS 

    Google Scholar 

  • Tomlinson, E. L., Kamber, B. S., Hoare, B. C., Stead, C. V. & Ildefonse, B. An exsolution origin for Archean mantle garnet. Geology 46, 123–126 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jennings, E. S. & Holland, T. J. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56, 869–892 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Klemme, S. & O’Neill, H. S. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib. Mineral. Petrol. 138, 237–248 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, C. & Liang, Y. Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib. Mineral. Petrol. 163, 807–823 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, C. & Liang, Y. Distribution of REE and HFSE between low-Ca pyroxene and lunar picritic melts around multiple saturation points. Geochim. Cosmochim. Acta 119, 340–358 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, C. & Liang, Y. The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts. Chem. Geol. 358, 23–36 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, C. & Liang, Y. An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites. Chem. Geol. 372, 80–91 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yao, L., Sun, C. & Liang, Y. A parameterized model for REE distribution between low-Ca pyroxene and basaltic melts with applications to REE partitioning in low-Ca pyroxene along a mantle adiabat and during pyroxenite-derived melt and peridotite interaction. Contrib. Mineral. Petrol. 164, 261–280 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lehnert, K., Su, Y., Langmuir, C. H., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1, 1012 (2000).

    Article 
    ADS 

    Google Scholar 

  • Banas, A. et al. Ancient metasomatism recorded by ultra-depleted garnet inclusions in diamonds from DeBeers Pool, South Africa. Lithos 112, 736–746 (2009).

    Article 
    ADS 

    Google Scholar 

  • Davies, R. M., Griffin, W. L., O’Reilly, S. Y. & Doyle, B. J. Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77, 39–55 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Donnelly, C. L., Stachel, T., Creighton, S., Muehlenbachs, K. & Whiteford, S. Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest territories, Canada. Lithos 98, 160–176 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Harris, J. W., Stachel, T., Léost, I. & Brey, G. P. Peridotitic diamonds from Namibia: constraints on the composition and evolution of their mantle source. Lithos 77, 209–223 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Logvinova, A. M., Taylor, L. A., Floss, C. & Sobolev, N. V. Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. Int. Geol. Rev. 47, 1223–1233 (2005).

    Article 

    Google Scholar 

  • Motsamai, T., Harris, J. W., Stachel, T., Pearson, D. G. & Armstrong, J. Mineral inclusions in diamonds from Karowe Mine, Botswana: super-deep sources for super-sized diamonds? Mineral. Petrol. 112, 169–180 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pokhilenko, N., Sobolev, N., Reutsky, V., Hall, A. & Taylor, L. Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos 77, 57–67 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sobolev, N. V. et al. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77, 225–242 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stachel, T. et al. The trace element composition of silicate inclusions in diamonds: a review. Lithos 77, 1–19 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stachel, T., Brey, G. P. & Harris, J. W. Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contrib. Mineral. Petrol. 140, 1–15 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stachel, T. & Harris, J. W. Diamond precipitation and mantle metasomatism–evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib. Mineral. Petrol. 129, 143–154 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stachel, T., Viljoen, K., McDade, P. & Harris, J. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton—the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contrib. Mineral. Petrol. 147, 32–47 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tappert, R., Stachel, T., Harris, J. W., Shimizu, N. & Brey, G. P. Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur. J. Mineral. 17, 423–440 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tappert, R., Stachel, T., Harris, J. W., Muehlenbachs, K. & Brey, G. P. Placer diamonds from Brazil: indicators of the composition of the earth’s mantle and the distance to their kimberlitic sources. Econ. Geol. 101, 453–470 (2006).

    Article 
    CAS 

    Google Scholar 

  • Viljoen, K., Harris, J., Ivanic, T., Richardson, S. & Gray, K. Trace element chemistry of peridotitic garnets in diamonds from the Premier (Cullinan) and Finsch kimberlites, South Africa: contrasting styles of mantle metasomatism. Lithos 208–209, 1–15 (2014).

    Article 
    ADS 

    Google Scholar 

  • Wang, W., Sueno, S., Takahashi, E., Yurimoto, H. & Gasparik, T. Enrichment processes at the base of the Archean lithospheric mantle: observations from trace element characteristics of pyropic garnet inclusions in diamonds. Contrib. Mineral. Petrol. 139, 720–733 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Creighton, S. et al. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Mineral. Petrol. 157, 491 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wasch, L. J. et al. An alternative model for silica enrichment in the Kaapvaal subcontinental lithospheric mantle. Geochim. Cosmochim. Acta 73, 6894–6917 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lazarov, M., Brey, G. P. & Weyer, S. Time steps of depletion and enrichment in the Kaapvaal craton as recorded by subcalcic garnets from Finsch (SA). Earth Planet. Sci. Lett. 279, 1–10 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lazarov, M., Woodland, A. B. & Brey, G. P. Thermal state and redox conditions of the Kaapvaal mantle: a study of xenoliths from the Finsch mine, South Africa. Lithos 112, 913–923 (2009).

    Article 
    ADS 

    Google Scholar 

  • Lazarov, M., Brey, G. P. & Weyer, S. Evolution of the South African mantle—a case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); Part 2: multiple depletion and re-enrichment processes. Lithos 154, 210–223 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grégoire, M., Bell, D. & Le Roex, A. Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. J. Petrol. 44, 629–657 (2003).

    Article 
    ADS 

    Google Scholar 

  • Peslier, A., Woodland, A., Bell, D., Lazarov, M. & Lapen, T. Metasomatic control of water contents in the Kaapvaal cratonic mantle. Geochim. Cosmochim. Acta 97, 213–246 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schmädicke, E., Gose, J., Reinhardt, J., Will, T. M. & Stalder, R. Garnet in cratonic and non-cratonic mantle and lower crustal xenoliths from southern Africa: composition, water incorporation and geodynamic constraints. Precambrian Res. 270, 285–299 (2015).

    Article 
    ADS 

    Google Scholar 

  • Shu, Q., Brey, G. P., Gerdes, A. & Hoefer, H. E. Geochronological and geochemical constraints on the formation and evolution of the mantle underneath the Kaapvaal craton: Lu–Hf and Sm–Nd systematics of subcalcic garnets from highly depleted peridotites. Geochim. Cosmochim. Acta 113, 1–20 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hanger, B. J., Yaxley, G. M., Berry, A. J. & Kamenetsky, V. S. Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa. Lithos 212–215, 443–452 (2015).

    Article 
    ADS 

    Google Scholar 

  • Hin, R. C. et al. Formation and temporal evolution of the Kalahari sub-cratonic lithospheric mantle: constraints from Venetia xenoliths, South Africa. Lithos 112, 1069–1082 (2009).

    Article 
    ADS 

    Google Scholar 

  • Boyd, F. et al. Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos 77, 573–592 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Luchs, T., Brey, G., Gerdes, A. & Höfer, H. The lithospheric mantle underneath the Gibeon Kimberlite field (Namibia): a mix of old and young components—evidence from Lu–Hf and Sm–Nd isotope systematics. Precambrian Res. 231, 263–276 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gibson, S., McMahon, S., Day, J. & Dawson, J. Highly refractory lithospheric mantle beneath the Tanzanian craton: evidence from Lashaine pre-metasomatic garnet-bearing peridotites. J. Petrol. 54, 1503–1546 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tappert, R., Foden, J., Muehlenbachs, K. & Wills, K. Garnet peridotite xenoliths and xenocrysts from the Monk Hill kimberlite, South Australia: insights into the lithospheric mantle beneath the Adelaide Fold Belt. J. Petrol. 52, 1965–1986 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Creighton, S. et al. Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. Contrib. Mineral. Petrol. 155, 541–554 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Creighton, S., Stachel, T., Eichenberg, D. & Luth, R. W. Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib. Mineral. Petrol. 159, 645–657 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Aulbach, S., Griffin, W. L., Pearson, N. J., O’Reilly, S. Y. & Doyle, B. J. Lithosphere formation in the central Slave Craton (Canada): plume subcretion or lithosphere accretion? Contrib. Mineral. Petrol. 154, 409–427 (2007).

    Article 
    CAS 

    Google Scholar 

  • Aulbach, S., Griffin, W. L., Pearson, N. J. & O’Reilly, S. Y. Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem. Geol. 352, 153–169 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Klein-BenDavid, O. & Pearson, D. G. Origins of subcalcic garnets and their relation to diamond forming fluids—case studies from Ekati (NWT-Canada) and Murowa (Zimbabwe). Geochim. Cosmochim. Acta 73, 837–855 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Westerlund, K. et al. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re–Os isotope systematics. Contrib. Mineral. Petrol. 152, 275–294 (2006).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Schmidberger, S. & Francis, D. Constraints on the trace element composition of the Archean mantle root beneath Somerset Island, Arctic Canada. J. Petrol. 42, 1095–1117 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hunt, L. et al. Small mantle fragments from the Renard kimberlites, Quebec: powerful recorders of mantle lithosphere formation and modification beneath the Eastern Superior Craton. J. Petrol. 53, 1597–1635 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smit, K., Pearson, D., Stachel, T. & Seller, M. Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the Northern Superior superterrane. J. Petrol. 55, 1829–1863 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zheng, J. et al. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J. Petrol. 47, 2233–2256 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lehtonen, M. L. Analytical geochemistry from “Electron microprobe and LA-ICP-MS analyses of garnet xenocrysts from Kaavi-Kuopio area kimberlites”, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA), https://doi.org/10.1594/IEDA/100264 (2013).

  • Lehtonen, M. & O’Brien, H. Mantle transect of the Karelian Craton from margin to core based on PT data from garnet and clinopyroxene xenocrysts in kimberlites. Bull. Geol. Soc. Finl. 81, 79–102 (2009).

    Article 
    CAS 

    Google Scholar 

  • Lehtonen, M., O’Brien, H., Johanson, B. & Pakkanen, L. Electron microprobe and LA-ICP-MS analyses of mantle xenocrysts from the Arkhangelskaya kimberlite, NW Russia. Geological Survey of Finland, Open File Report M41.2 (2008).

  • Riches, A. J., Liu, Y., Day, J. M., Spetsius, Z. V. & Taylor, L. A. Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120, 368–378 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Howarth, G. H. et al. Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184–187, 209–224 (2014).

    Article 
    ADS 

    Google Scholar 

  • Agashev, A. et al. Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161, 201–215 (2013).

    Article 
    ADS 

    Google Scholar 

  • Doucet, L. S., Ionov, D. A. & Golovin, A. V. The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 165, 1225–1242 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ionov, D. A., Doucet, L. S. & Ashchepkov, I. V. Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 51, 2177–2210 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pokhilenko, N., Agashev, A., Litasov, K. & Pokhilenko, L. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russ. Geol. Geophys. 56, 280–295 (2015).

    Article 
    ADS 

    Google Scholar 

  • Solov’eva, L., Yasnygina, T. & Egorov, K. Metasomatic parageneses in deep-seated xenoliths from pipes Udachnaya and Komsomol’skaya-Magnitnaya as indicators of fluid transfer through the mantle lithosphere of the Siberian craton. Russ. Geol. Geophys. 53, 1304–1323 (2012).

    Article 
    ADS 

    Google Scholar 

  • Shchukina, E., Agashev, A., Kostrovitsky, S. & Pokhilenko, N. Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia). Russ. Geol. Geophys. 56, 1701–1716 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ziberna, L., Nimis, P., Zanetti, A., Marzoli, A. & Sobolev, N. V. Metasomatic processes in the central Siberian cratonic mantle: evidence from garnet xenocrysts from the Zagadochnaya kimberlite. J. Petrol. 54, 2379–2409 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, S.-S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345 (1989).

    Article 
    ADS 

    Google Scholar 

  • Salters, V. J. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet. Sci. Lett. 166, 15–30 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *