Kopylova, M. G. & Caro, G. Mantle xenoliths from the southeastern Slave craton: evidence for chemical zonation in a thick, cold lithosphere. J. Petrol. 45, 1045–1067 (2004).
Google Scholar
Begg, G. C. et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5, 23–50 (2009).
Google Scholar
Griffin, W. et al. The origin and evolution of Archean lithospheric mantle. Precambrian Res. 127, 19–41 (2003).
Google Scholar
Canil, D. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77, 375–393 (2004).
Google Scholar
Brey, G. P. & Shu, Q. The birth, growth and ageing of the Kaapvaal subcratonic mantle. Mineral. Petrol. 112, 23–41 (2018).
Google Scholar
Pearson, D. G. et al. Deep continental roots and cratons. Nature 596, 199–210 (2021).
Google Scholar
Wittig, N. et al. Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet. Sci. Lett. 274, 24–33 (2008).
Google Scholar
Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 159, 1–12 (1998).
Google Scholar
Lee, C.-T. A. & Chin, E. J. Calculating melting temperatures and pressures of peridotite protoliths: implications for the origin of cratonic mantle. Earth Planet. Sci. Lett. 403, 273–286 (2014).
Google Scholar
Boyd, F. R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15–26 (1989).
Google Scholar
Robin-Popieul, C. C. et al. A new model for Barberton komatiites: deep critical melting with high melt retention. J. Petrol. 53, 2191–2229 (2012).
Google Scholar
Wilson, A. H. The late-Paleoarchean ultra-depleted Commondale komatiites: Earth’s hottest lavas and consequences for eruption. J. Petrol. 60, 1575–1620 (2019).
Google Scholar
Davies, G. F. Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett. 275, 382–392 (2008).
Google Scholar
Pearson, D. G. & Wittig, N. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. 165, 895–914 (2008).
Google Scholar
Kamber, B. S. & Tomlinson, E. L. Petrological, mineralogical and geochemical peculiarities of Archaean cratons. Chem. Geol. 511, 123–151 (2019).
Google Scholar
Takahashi, E. & Scarfe, C. M. Melting of peridotite to 14 GPa and the genesis of komatiite. Nature 315, 566–568 (1985).
Google Scholar
Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. Solid Earth 97, 4521–4540 (1992).
Google Scholar
Simon, N. S. C., Carlson, R. W., Pearson, D. G. & Davies, G. R. The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J. Petrol. 48, 589–625 (2007).
Google Scholar
Schulze, D. J. A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71, 195–213 (2003).
Google Scholar
Holland, T. J. B., Green, E. C. R. & Powell, R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. J. Petrol. 59, 881–900 (2018).
Google Scholar
Tomlinson, E. L. & Holland, T. J. A thermodynamic model for the subsolidus evolution and melting of peridotite. J. Petrol. 62, egab012 (2021).
Google Scholar
Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).
Google Scholar
Schmeling, H. & Arndt, N. Modelling komatiitic melt accumulation and segregation in the transition zone. Earth Planet. Sci. Lett. 472, 95–106 (2017).
Google Scholar
Tomlinson, E. L. & Kamber, B. S. Depth-dependent peridotite-melt interaction and the origin of variable silica in the cratonic mantle. Nat. Commun. 12, 1082 (2021).
Google Scholar
Grütter, H. S., Gurney, J. J., Menzies, A. H. & Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77, 841–857 (2004).
Google Scholar
Stachel, T. & Harris, J. The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol. Rev. 34, 5–32 (2008).
Google Scholar
Zou, H. & Reid, M. R. Quantitative modeling of trace element fractionation during incongruent dynamic melting. Geochim. Cosmochim. Acta 65, 153–162 (2001).
Google Scholar
Pokhilenko, N. P., Pearson, D. G., Boyd, F. R. & Sobolev, N. V. Megacrystalline dunites and peridotites: hosts for Siberian diamonds. Ann. Rep. Dir. Geophys. Lab. 11–18 (1991).
Viljoen, K., Swash, P., Otter, M., Schulze, D. & Lawless, P. Diamondiferous garnet harzburgites from the Finsch kimberlite, Northern Cape, South Africa. Contrib. Mineral. Petrol. 110, 133–138 (1992).
Google Scholar
Sproule, R. A., Lesher, C. M., Ayer, J. A., Thurston, P. C. & Herzberg, C. T. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Res. 115, 153–186 (2002).
Google Scholar
Wilson, A. & Bolhar, R. Olivine in komatiite records origin and travel from the deep upper mantle. Geology 50, 351–355 (2021).
Google Scholar
McKenzie, D. Speculations on the generation and movement of komatiites. J. Petrol. 61, egaa061 (2020).
Google Scholar
Canil, D. & O’Neill, H. S. C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996).
Google Scholar
McCammon, C. & Kopylova, M. A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Mineral. Petrol. 148, 55–68 (2004).
Google Scholar
McCammon, C., Griffin, W. L., Shee, S. & O’Neill, H. S. C. Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib. Mineral. Petrol. 141, 287 (2001).
Google Scholar
Nimis, P., Preston, R., Perritt, S. H. & Chinn, I. L. Diamond’s depth distribution systematics. Lithos 376–377, 105729 (2020).
Google Scholar
Shu, Q. & Brey, G. P. Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett. 418, 27–39 (2015).
Google Scholar
Hoare, B. C., Tomlinson, E. L. & Kamber, B. S. Evidence for a very thick Kaapvaal craton root: implications for equilibrium fossil geotherms in the early continental lithosphere. Earth Planet. Sci. Lett. 597, 117796 (2022).
Google Scholar
Moore, W. B. & Webb, A. A. G. Heat-pipe earth. Nature 501, 501–505 (2013).
Google Scholar
Nesbitt, R., Sun, S.-S. & Purvis, A. Komatiites; geochemistry and genesis. Can. Mineral. 17, 165–186 (1979).
Google Scholar
Powell, R. & Holland, T. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol. 6, 173–204 (1988).
Google Scholar
Lexa, O. pypsbuilder, https://pypsbuilder.readthedocs.io/en/latest/index.html (2020).
Palin, R. M. et al. High‐grade metamorphism and partial melting of basic and intermediate rocks. J. Metamorph. Geol. 34, 871–892 (2016).
Google Scholar
Kendrick, J. & Yakymchuk, C. Garnet fractionation, progressive melt loss and bulk composition variations in anatectic metabasites: complications for interpreting the geodynamic significance of TTGs. Geosci. Front. 11, 745–763 (2020).
Google Scholar
Hernández-Montenegro, J. D., Palin, R. M., Zuluaga, C. A. & Hernández-Uribe, D. Archean continental crust formed by magma hybridization and voluminous partial melting. Sci. Rep. 11, 5263 (2021).
Google Scholar
Takahashi, E. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J. Geophys. Res. Solid Earth 91, 9367–9382 (1986).
Google Scholar
Tomlinson, E. L., Kamber, B. S., Hoare, B. C., Stead, C. V. & Ildefonse, B. An exsolution origin for Archean mantle garnet. Geology 46, 123–126 (2018).
Google Scholar
Jennings, E. S. & Holland, T. J. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56, 869–892 (2015).
Google Scholar
Klemme, S. & O’Neill, H. S. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib. Mineral. Petrol. 138, 237–248 (2000).
Google Scholar
McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Google Scholar
Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994).
Google Scholar
Sun, C. & Liang, Y. Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib. Mineral. Petrol. 163, 807–823 (2012).
Google Scholar
Sun, C. & Liang, Y. Distribution of REE and HFSE between low-Ca pyroxene and lunar picritic melts around multiple saturation points. Geochim. Cosmochim. Acta 119, 340–358 (2013).
Google Scholar
Sun, C. & Liang, Y. The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts. Chem. Geol. 358, 23–36 (2013).
Google Scholar
Sun, C. & Liang, Y. An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites. Chem. Geol. 372, 80–91 (2014).
Google Scholar
Yao, L., Sun, C. & Liang, Y. A parameterized model for REE distribution between low-Ca pyroxene and basaltic melts with applications to REE partitioning in low-Ca pyroxene along a mantle adiabat and during pyroxenite-derived melt and peridotite interaction. Contrib. Mineral. Petrol. 164, 261–280 (2012).
Google Scholar
Lehnert, K., Su, Y., Langmuir, C. H., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1, 1012 (2000).
Google Scholar
Banas, A. et al. Ancient metasomatism recorded by ultra-depleted garnet inclusions in diamonds from DeBeers Pool, South Africa. Lithos 112, 736–746 (2009).
Google Scholar
Davies, R. M., Griffin, W. L., O’Reilly, S. Y. & Doyle, B. J. Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77, 39–55 (2004).
Google Scholar
Donnelly, C. L., Stachel, T., Creighton, S., Muehlenbachs, K. & Whiteford, S. Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest territories, Canada. Lithos 98, 160–176 (2007).
Google Scholar
Harris, J. W., Stachel, T., Léost, I. & Brey, G. P. Peridotitic diamonds from Namibia: constraints on the composition and evolution of their mantle source. Lithos 77, 209–223 (2004).
Google Scholar
Logvinova, A. M., Taylor, L. A., Floss, C. & Sobolev, N. V. Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. Int. Geol. Rev. 47, 1223–1233 (2005).
Google Scholar
Motsamai, T., Harris, J. W., Stachel, T., Pearson, D. G. & Armstrong, J. Mineral inclusions in diamonds from Karowe Mine, Botswana: super-deep sources for super-sized diamonds? Mineral. Petrol. 112, 169–180 (2018).
Google Scholar
Pokhilenko, N., Sobolev, N., Reutsky, V., Hall, A. & Taylor, L. Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos 77, 57–67 (2004).
Google Scholar
Sobolev, N. V. et al. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77, 225–242 (2004).
Google Scholar
Stachel, T. et al. The trace element composition of silicate inclusions in diamonds: a review. Lithos 77, 1–19 (2004).
Google Scholar
Stachel, T., Brey, G. P. & Harris, J. W. Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contrib. Mineral. Petrol. 140, 1–15 (2000).
Google Scholar
Stachel, T. & Harris, J. W. Diamond precipitation and mantle metasomatism–evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib. Mineral. Petrol. 129, 143–154 (1997).
Google Scholar
Stachel, T., Viljoen, K., McDade, P. & Harris, J. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton—the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contrib. Mineral. Petrol. 147, 32–47 (2004).
Google Scholar
Tappert, R., Stachel, T., Harris, J. W., Shimizu, N. & Brey, G. P. Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur. J. Mineral. 17, 423–440 (2005).
Google Scholar
Tappert, R., Stachel, T., Harris, J. W., Muehlenbachs, K. & Brey, G. P. Placer diamonds from Brazil: indicators of the composition of the earth’s mantle and the distance to their kimberlitic sources. Econ. Geol. 101, 453–470 (2006).
Google Scholar
Viljoen, K., Harris, J., Ivanic, T., Richardson, S. & Gray, K. Trace element chemistry of peridotitic garnets in diamonds from the Premier (Cullinan) and Finsch kimberlites, South Africa: contrasting styles of mantle metasomatism. Lithos 208–209, 1–15 (2014).
Google Scholar
Wang, W., Sueno, S., Takahashi, E., Yurimoto, H. & Gasparik, T. Enrichment processes at the base of the Archean lithospheric mantle: observations from trace element characteristics of pyropic garnet inclusions in diamonds. Contrib. Mineral. Petrol. 139, 720–733 (2000).
Google Scholar
Creighton, S. et al. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Mineral. Petrol. 157, 491 (2009).
Google Scholar
Wasch, L. J. et al. An alternative model for silica enrichment in the Kaapvaal subcontinental lithospheric mantle. Geochim. Cosmochim. Acta 73, 6894–6917 (2009).
Google Scholar
Lazarov, M., Brey, G. P. & Weyer, S. Time steps of depletion and enrichment in the Kaapvaal craton as recorded by subcalcic garnets from Finsch (SA). Earth Planet. Sci. Lett. 279, 1–10 (2009).
Google Scholar
Lazarov, M., Woodland, A. B. & Brey, G. P. Thermal state and redox conditions of the Kaapvaal mantle: a study of xenoliths from the Finsch mine, South Africa. Lithos 112, 913–923 (2009).
Google Scholar
Lazarov, M., Brey, G. P. & Weyer, S. Evolution of the South African mantle—a case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); Part 2: multiple depletion and re-enrichment processes. Lithos 154, 210–223 (2012).
Google Scholar
Grégoire, M., Bell, D. & Le Roex, A. Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. J. Petrol. 44, 629–657 (2003).
Google Scholar
Peslier, A., Woodland, A., Bell, D., Lazarov, M. & Lapen, T. Metasomatic control of water contents in the Kaapvaal cratonic mantle. Geochim. Cosmochim. Acta 97, 213–246 (2012).
Google Scholar
Schmädicke, E., Gose, J., Reinhardt, J., Will, T. M. & Stalder, R. Garnet in cratonic and non-cratonic mantle and lower crustal xenoliths from southern Africa: composition, water incorporation and geodynamic constraints. Precambrian Res. 270, 285–299 (2015).
Google Scholar
Shu, Q., Brey, G. P., Gerdes, A. & Hoefer, H. E. Geochronological and geochemical constraints on the formation and evolution of the mantle underneath the Kaapvaal craton: Lu–Hf and Sm–Nd systematics of subcalcic garnets from highly depleted peridotites. Geochim. Cosmochim. Acta 113, 1–20 (2013).
Google Scholar
Hanger, B. J., Yaxley, G. M., Berry, A. J. & Kamenetsky, V. S. Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa. Lithos 212–215, 443–452 (2015).
Google Scholar
Hin, R. C. et al. Formation and temporal evolution of the Kalahari sub-cratonic lithospheric mantle: constraints from Venetia xenoliths, South Africa. Lithos 112, 1069–1082 (2009).
Google Scholar
Boyd, F. et al. Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos 77, 573–592 (2004).
Google Scholar
Luchs, T., Brey, G., Gerdes, A. & Höfer, H. The lithospheric mantle underneath the Gibeon Kimberlite field (Namibia): a mix of old and young components—evidence from Lu–Hf and Sm–Nd isotope systematics. Precambrian Res. 231, 263–276 (2013).
Google Scholar
Gibson, S., McMahon, S., Day, J. & Dawson, J. Highly refractory lithospheric mantle beneath the Tanzanian craton: evidence from Lashaine pre-metasomatic garnet-bearing peridotites. J. Petrol. 54, 1503–1546 (2013).
Google Scholar
Tappert, R., Foden, J., Muehlenbachs, K. & Wills, K. Garnet peridotite xenoliths and xenocrysts from the Monk Hill kimberlite, South Australia: insights into the lithospheric mantle beneath the Adelaide Fold Belt. J. Petrol. 52, 1965–1986 (2011).
Google Scholar
Creighton, S. et al. Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. Contrib. Mineral. Petrol. 155, 541–554 (2008).
Google Scholar
Creighton, S., Stachel, T., Eichenberg, D. & Luth, R. W. Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib. Mineral. Petrol. 159, 645–657 (2010).
Google Scholar
Aulbach, S., Griffin, W. L., Pearson, N. J., O’Reilly, S. Y. & Doyle, B. J. Lithosphere formation in the central Slave Craton (Canada): plume subcretion or lithosphere accretion? Contrib. Mineral. Petrol. 154, 409–427 (2007).
Google Scholar
Aulbach, S., Griffin, W. L., Pearson, N. J. & O’Reilly, S. Y. Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem. Geol. 352, 153–169 (2013).
Google Scholar
Klein-BenDavid, O. & Pearson, D. G. Origins of subcalcic garnets and their relation to diamond forming fluids—case studies from Ekati (NWT-Canada) and Murowa (Zimbabwe). Geochim. Cosmochim. Acta 73, 837–855 (2009).
Google Scholar
Westerlund, K. et al. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re–Os isotope systematics. Contrib. Mineral. Petrol. 152, 275–294 (2006).
Google Scholar
Schmidberger, S. & Francis, D. Constraints on the trace element composition of the Archean mantle root beneath Somerset Island, Arctic Canada. J. Petrol. 42, 1095–1117 (2001).
Google Scholar
Hunt, L. et al. Small mantle fragments from the Renard kimberlites, Quebec: powerful recorders of mantle lithosphere formation and modification beneath the Eastern Superior Craton. J. Petrol. 53, 1597–1635 (2012).
Google Scholar
Smit, K., Pearson, D., Stachel, T. & Seller, M. Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the Northern Superior superterrane. J. Petrol. 55, 1829–1863 (2014).
Google Scholar
Zheng, J. et al. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J. Petrol. 47, 2233–2256 (2006).
Google Scholar
Lehtonen, M. L. Analytical geochemistry from “Electron microprobe and LA-ICP-MS analyses of garnet xenocrysts from Kaavi-Kuopio area kimberlites”, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA), https://doi.org/10.1594/IEDA/100264 (2013).
Lehtonen, M. & O’Brien, H. Mantle transect of the Karelian Craton from margin to core based on PT data from garnet and clinopyroxene xenocrysts in kimberlites. Bull. Geol. Soc. Finl. 81, 79–102 (2009).
Google Scholar
Lehtonen, M., O’Brien, H., Johanson, B. & Pakkanen, L. Electron microprobe and LA-ICP-MS analyses of mantle xenocrysts from the Arkhangelskaya kimberlite, NW Russia. Geological Survey of Finland, Open File Report M41.2 (2008).
Riches, A. J., Liu, Y., Day, J. M., Spetsius, Z. V. & Taylor, L. A. Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120, 368–378 (2010).
Google Scholar
Howarth, G. H. et al. Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184–187, 209–224 (2014).
Google Scholar
Agashev, A. et al. Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161, 201–215 (2013).
Google Scholar
Doucet, L. S., Ionov, D. A. & Golovin, A. V. The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 165, 1225–1242 (2013).
Google Scholar
Ionov, D. A., Doucet, L. S. & Ashchepkov, I. V. Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 51, 2177–2210 (2010).
Google Scholar
Pokhilenko, N., Agashev, A., Litasov, K. & Pokhilenko, L. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russ. Geol. Geophys. 56, 280–295 (2015).
Google Scholar
Solov’eva, L., Yasnygina, T. & Egorov, K. Metasomatic parageneses in deep-seated xenoliths from pipes Udachnaya and Komsomol’skaya-Magnitnaya as indicators of fluid transfer through the mantle lithosphere of the Siberian craton. Russ. Geol. Geophys. 53, 1304–1323 (2012).
Google Scholar
Shchukina, E., Agashev, A., Kostrovitsky, S. & Pokhilenko, N. Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia). Russ. Geol. Geophys. 56, 1701–1716 (2015).
Google Scholar
Ziberna, L., Nimis, P., Zanetti, A., Marzoli, A. & Sobolev, N. V. Metasomatic processes in the central Siberian cratonic mantle: evidence from garnet xenocrysts from the Zagadochnaya kimberlite. J. Petrol. 54, 2379–2409 (2013).
Google Scholar
Sun, S.-S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345 (1989).
Google Scholar
Salters, V. J. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet. Sci. Lett. 166, 15–30 (1999).
Google Scholar