Strange India All Strange Things About India and world


  • 1.

    Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Haberle, R. M., Catling, D. C., Carr, M. H. & Zahnle, K. J. in The Atmosphere and Climate of Mars (eds Haberle, R. M. et al.) 526–568 (Cambridge Planetary Science, Cambridge Univ. Press, 2017).

  • 3.

    Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Way, M. J. et al. Was Venus the first habitable world of our Solar System? Geophys. Res. Lett. 43, 8376–8383 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Bézard, B. & de Bergh, C. Composition of the atmosphere of Venus below the clouds. J. Geophys. Res. Planets 112, E04S07 (2007).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Phillips, R. J. et al. Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15923–15948 (1992).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Kreslavsky, M. A., Ivanov, M. A. & Head, J. W. The resurfacing history of Venus: constraints from buffered crater densities. Icarus 250, 438–450 (2015).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Kite, E. S. Geologic constraints on early Mars climate. Space Sci. Rev. 215, 10 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).

    Article 

    Google Scholar 

  • 12.

    de Bergh, C. et al. Deuterium on Venus: observations from Earth. Science 251, 547–549 (1991).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Marcq, E., Mills, F. P., Parkinson, C. D. & Vandaele, A. C. Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214, 10 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Kasting, J. F. & Pollack, J. B. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Salvador, A. et al. The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res. Planets 122, 1458–1486 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Charnay, B. et al. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J. Geophys. Res. Atmos. 118, 10414–10431 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Wolf, E. T. & Toon, E. B. Hospitable Archean climates simulated by a general circulation model. Astrobiology 13, 656–673 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Leconte, J., Forget, F., Charnay, B., Wordsworth, R. & Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–280 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Wolf, E. T. & Toon, O. B. Delayed onset of runaway and moist greenhouse climates for Earth. Geophys. Res. Lett. 41, 167–172 (2014).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Charnay, B., Wolf, E. T., Marty, B. & Forget, F. Is the faint young Sun problem for Earth solved? Space Sci. Rev. 216, 90 (2020).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Pierrehumbert, R. T. Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci. 52, 1784–1806 (1995).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Lebrun, T. et al. Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res. Planets 118, 1155–1176 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Kopparapu, R. K. et al. habitable moist atmospheres on terrestrial planets near the inner edge of the habitable zone around M dwarfs. Astrophys. J. 845, 5 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Fujii, Y., Del Genio, A. D. & Amundsen, D. S. NIR-driven moist upper atmospheres of synchronously rotating temperate terrestrial exoplanets. Astrophys. J. 848, 100 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Goldblatt, C., Robinson, T. D., Zahnle, K. J. & Crisp, D. Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661–667 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Turbet, M., Ehrenreich, D., Lovis, C., Bolmont, E. & Fauchez, T. The runaway greenhouse radius inflation effect—an observational diagnostic to probe water on earth-sized planets and test the habitable zone concept. Astron. Astrophys. 628, A12 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Jansen, T., Scharf, C., Way, M. & Del Genio, A. Climates of warm Earth-like planets. II. Rotational “Goldilocks” zones for fractional habitability and silicate weathering. Astrophys. J. 875, 79 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Yang, J., Cowan, N. B. & Abbot, D. S. Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Astrophys. J. Lett. 771, L45 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Yang, J., Boué, G., Fabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 787, L2 (2014).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Kopparapu, R. K. et al. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys. J. 819, 84 (2016).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Fauchez, T. J. et al. TRAPPIST Habitable Atmosphere Intercomparison (THAI) workshop report. Planet. Sci. J. 2, 106 (2021).

  • 35.

    Grinspoon, D. H. Was Venus wet? Deuterium reconsidered. Science 238, 1702–1704 (1987).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Gurwell, M. A. Evolution of deuterium on Venus. Nature 378, 22–23 (1995).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265–269 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Persson, M. et al. The Venusian atmospheric oxygen ion escape: extrapolation to the early Solar System. J. Geophys. Res. Planets 125, e06336 (2020).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Lichtenegger, H. I. M. et al. Solar XUV and ENA-driven water loss from early Venus’ steam atmosphere. J. Geophys. Res. Space Phys. 121, 4718–4732 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Lammer, H. et al. Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron. Astrophys. Rev. 26, 2 (2018).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Shields, A. L., Bitz, C. M., Meadows, V. S., Joshi, M. M. & Robinson, T. D. Spectrum-driven planetary deglaciation due to increases in stellar luminosity. Astrophys. J. Lett. 785, L9 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Hourdin, F. et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813 (2006).

    Article 

    Google Scholar 

  • 45.

    Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Forget, F. et al. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Wordsworth, R. et al. Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Turbet, M., Forget, F., Leconte, J., Charnay, B. & Tobie, G. CO2 condensation is a serious limit to the deglaciation of Earth-like planets. Earth Planet. Sci. Lett. 476, 11–21 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Turbet, M. et al. The environmental effects of very large bolide impacts on early Mars explored with a hierarchy of numerical models. Icarus 335, 113419 (2020).

    Article 

    Google Scholar 

  • 50.

    Wordsworth, R. D. et al. Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. Astrophys. J. Lett. 733, L48 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Leconte, J. et al. 3D climate modeling of close-in land planets: circulation patterns, climate moist bistability, and habitability. Astron. Astrophys. 554, A69 (2013).

    Article 

    Google Scholar 

  • 52.

    Turbet, M. et al. Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets. Astron. Astrophys. 612, A86 (2018).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Fu, Q. & Liou, K. N. On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci. 49, 2139–2156 (1992).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Karman, T. et al. Update of the HITRAN collision-induced absorption section. Icarus 328, 160–175 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 55.

    Mlawer, E. J. et al. Development and recent evaluation of the MT CKD model of continuum absorption. Phil. Trans. R. Soc. Lond. A 370, 2520– 2556 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 58.

    Mellor, G. L. & Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–875 (1982).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Galperin, B., Kantha, L. H., Hassid, S. & Rosati, A. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 45, 55–62 (1988).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Manabe, S. & Wetherald, R. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    Charnay, B. Tropospheric Dynamics and Climatic Evolution of Titan and the Early Earth. PhD thesis, Univ. Pierre et Marie Curie – Paris VI (2014); https://tel.archives-ouvertes.fr/tel-00987546

  • 62.

    Wallace, J. M. & Hobbs, P. V. in Atmospheric Science 2nd edn (eds Wallace, J. M. & Hobbs, P. V.) 209–269 (Academic, 2006).

  • 63.

    Charnay, B. et al. Formation and dynamics of water clouds on temperate sub-Neptunes: the example of K2-18b. Astron. Astrophys. 646, A171 (2021).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Boucher, O., Le Treut, H. & Baker, M. B. Precipitation and radiation modeling in a general circulation model: introduction of cloud microphysical processes. J. Geophys. Res. 100, 16395–16414 (1995).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Gregory, D. A consistent treatment of the evaporation of rain and snow for use in large-scale models. Mon. Weather Rev. 123, 2716–2732 (1995).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Rossow, W. B. Cloud microphysics—analysis of the clouds of Earth, Venus, Mars, and Jupiter. Icarus 36, 1–50 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 67.

    Nakajima, S., Hayashi, Y.-Y. & Abe, Y. A study on the ’runaway greenhouse effect’ with a one-dimensional radiative-convective equilibrium model. J. Atmos. Sci. 49, 2256–2266 (1992).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Goldblatt, C. & Watson, A. J. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Phil. Trans. R. Soc. Lond. A 370, 4197–4216 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 69.

    Marcq, E., Salvador, A., Massol, H. & Davaille, A. Thermal radiation of magma ocean planets using a 1-D radiative-convective model of H2O–CO2 atmospheres. J. Geophys. Res. Planets 122, 1539–1553 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Massol, H. et al. Formation and evolution of protoatmospheres. Space Sci. Rev. 205, 153–211 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Pluriel, W., Marcq, E. & Turbet, M. Modeling the albedo of Earth-like magma ocean planets with H2O–CO2 atmospheres. Icarus 317, 583–590 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.