Strange India All Strange Things About India and world


  • 1.

    Liska, A., Galbusera, A., Schwarz, A. J. & Gozzi, A. Functional connectivity hubs of the mouse brain. Neuroimage 115, 281–291 (2015).

    Article 

    Google Scholar 

  • 2.

    Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Mann, K., Gallen, C. L. & Clandinin, T. R. Whole-brain calcium imaging reveals an intrinsic functional network in Drosophila. Curr. Biol. 27, 2389–2396.e4 (2017).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 (2014).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Power, J. D., Schlaggar, B. L. & Petersen, S. E. Studying brain organization via spontaneous fMRI signal. Neuron 84, 681–696 (2014).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Horwitz, B., Soncrant, T. T. & Haxby, J. V. in Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions (eds Gonzalez-Lima, F. et al.) 189–217 (1992).

  • 9.

    Sokoloff, L., Kennedy, C. & Smith, C. B. in Carbohydrates and Energy Metabolism (eds Boulton, A. A. et al.) 155–193 (1989).

  • 10.

    Passow, S. et al. Default-mode network functional connectivity is closely related to metabolic activity. Hum. Brain Mapp. 36, 2027–2038 (2015).

    Article 

    Google Scholar 

  • 11.

    Schölvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H. & Leopold, D. A. Neural basis of global resting-state fMRI activity. Proc. Natl Acad. Sci. USA 107, 10238–10243 (2010).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Migault, G. et al. Whole-brain calcium imaging during physiological vestibular stimulation in larval zebrafish. Curr. Biol. 28, 3723–3735.e6 (2018).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Harris, D. T., Kallman, B. R., Mullaney, B. C. & Scott, K. Representations of taste modality in the Drosophila brain. Neuron 86, 1449–1460 (2015).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Lemon, W. C. et al. Whole-central nervous system functional imaging in larval Drosophila. Nat. Commun. 6, 7924 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Aimon, S. et al. Fast near-whole-brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biol. 17, e2006732 (2019).

    Article 

    Google Scholar 

  • 16.

    Palva, J. M. & Palva, S. Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. Neuroimage 62, 2201–2211 (2012).

    Article 

    Google Scholar 

  • 17.

    Mitra, A. et al. Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure. Neuron 98, 297–305.e6 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    CAS 
    Article 

    Google Scholar 

  • 19.

    San Martín, A. et al. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS ONE 9, e85780 (2014).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Plaçais, P.-Y. et al. Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nat. Commun. 8, 15510 (2017).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Gonzalez-Gutierrez, A., Ibacache, A., Esparza, A., Felipe Barros, L. & Sierralta, J. Monocarboxylate transport in Drosophila larval brain during low and high neuronal activity. Preprint at https://doi.org/10.1101/610196 (2019).

  • 22.

    Lobas, M. A. et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10, 711 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Ito, K. et al. A systematic nomenclature for the insect brain. Neuron 81, 755–765 (2014).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    Article 

    Google Scholar 

  • 27.

    Saitoe, M., Schwarz, T. L., Umbach, J. A., Gundersen, C. B. & Kidokoro, Y. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release. Science 293, 514–517 (2001).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Stocker, R. F., Heimbeck, G., Gendre, N. & de Belle, J. S. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J. Neurobiol. 32, 443–456 (1997).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Wagenmakers, E.-J., Farrell, S. & Ratcliff, R. Estimation and interpretation of 1/fα noise in human cognition. Psychon. Bull. Rev. 11, 579–615 (2004).

    Article 

    Google Scholar 

  • 31.

    Weissman, M. B. 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W. & Card, G. M. The functional organization of descending sensory-motor pathways in Drosophila. eLife 7, e34272 (2018).

    Article 

    Google Scholar 

  • 33.

    Bidaye, S. S., Machacek, C., Wu, Y. & Dickson, B. J. Neuronal control of Drosophila walking direction. Science 344, 97–101 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Hugdahl, K., Raichle, M. E., Mitra, A. & Specht, K. On the existence of a generalized non-specific task-dependent network. Front. Hum. Neurosci. 9, 430 (2015).

    Article 

    Google Scholar 

  • 35.

    Cong, L. et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, e28158 (2017).

    Article 

    Google Scholar 

  • 36.

    Nguyen, J. P. et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E1074–E1081 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Selemon, L. D. & Goldman-Rakic, P. S. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J. Neurosci. 8, 4049–4068 (1988).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Millman, K. J., Jarrod Millman, K. & Aivazis, M. Python for scientists and engineers. Comput. Sci. Eng. 13, 9–12 (2011).

    Article 

    Google Scholar 

  • 41.

    Friard, O. & Gamba, M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *