Strange IndiaStrange India


  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • De la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 5298 (2021).

    Article 
    ADS 

    Google Scholar 

  • Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rabe, K. M., Dawber, M., Lichtensteiger, C., Ahn, C. H. & Triscone, J.-M. in Physics of Ferroelectrics 1–30 (Springer, 2007).

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

  • Liu, Y., Liu, S., Li, B., Yoo, W. J. & Hone, J. Identifying the transition order in an artificial ferroelectric van der Waals heterostructure. Nano Lett. 22, 1265–1269 (2022).

  • Sando, D., Barthélémy, A. & Bibes, M. BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter 26, 473201 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ye, J. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hamill, A. et al. Two-fold symmetric superconductivity in few-layer NbSe2. Nat. Phys. 17, 949–954 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rhodes, D. A. et al. Enhanced superconductivity in monolayer Td-MoTe2. Nano Lett. 21, 2505–2511 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article 
    ADS 

    Google Scholar 

  • Deng, K. et al. Experimental observation of topological Fermi arcs in type-IIWeyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Article 
    CAS 

    Google Scholar 

  • Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, W. et al. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 368, 534–537 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article 

    Google Scholar 

  • Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article 
    CAS 

    Google Scholar 

  • Liu, X. et al. Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale 11, 18575–18581 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sondheimer, E. & Wilson, A. H. The theory of the magneto-resistance effects in metals. Proc. R. Soc. Lond. A 190, 435–455 (1947).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Chen, F. et al. Extremely large magnetoresistance in the type-II Weyl semimetal MoTe2. Phys. Rev. B 94, 235154 (2016).

    Article 
    ADS 

    Google Scholar 

  • Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zandt, T., Dwelk, H., Janowitz, C. & Manzke, R. Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2. J. Alloys Compd 442, 216–218 (2007).

    Article 
    CAS 

    Google Scholar 

  • Hussey, N., Buhot, J. & Licciardello, S. A tale of two metals: contrasting criticalities in the pnictides and hole-doped cuprates. Rep. Progr. Phys. 81, 052501 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Greene, R. L., Mandal, P. R., Poniatowski, N. R. & Sarkar, T. The strange metal state of the electron-doped cuprates. Ann. Rev. Condens. Matter Phys. 11, 213–229 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhai, B., Li, B., Wen, Y., Wu, F. & He, J. Prediction of ferroelectric superconductors with reversible superconducting diode effect. Phys. Rev. B 106, L140505 (2022).

  • Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ji, S., Granas, O. & Weissenrieder, J. Manipulation of stacking order in Td-WTe2 by ultrafast optical excitation. ACS Nano 15, 8826–8835 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gan, Y. et al. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys. 15, 33602 (2020).

    Article 
    ADS 

    Google Scholar 

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 
    ADS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article 
    ADS 

    Google Scholar 

  • Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966).

    Article 
    CAS 

    Google Scholar 

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Graser, S., Maier, T., Hirschfeld, P. & Scalapino, D. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. N. J. Phys. 11, 025016 (2009).

    Article 

    Google Scholar 

  • Christensen, M. H., Kang, J., Andersen, B. M. & Fernandes, R. M. Spin-driven nematic instability of the multiorbital Hubbard model: Application to iron-based superconductors. Phys. Rev. B 93, 085136 (2016).

    Article 
    ADS 

    Google Scholar 

  • Python Tight Binding (PythTB) (2021); http://physics.rutgers.edu/pythtb/



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *