Strange IndiaStrange India


  • 1.

    Dykes, R. W., Rasmusson, D. D. & Hoeltzell, P. B. Organization of primary somatosensory cortex in the cat. J. Neurophysiol. 43, 1527–1546 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Mountcastle, V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Paul, R. L., Merzenich, M. & Goodman, H. Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta. Brain Res. 36, 229–249 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Phillips, J. R., Johnson, K. O. & Hsiao, S. S. Spatial pattern representation and transformation in monkey somatosensory cortex. Proc. Natl Acad. Sci. USA 85, 1317–1321 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Sur, M., Wall, J. T. & Kaas, J. H. Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212, 1059–1061 (1981).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Sur, M., Wall, J. T. & Kaas, J. H. Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. J. Neurophysiol. 51, 724–744 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Kaas, J. H., Nelson, R. J., Sur, M., Dykes, R. W. & Merzenich, M. M. The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. J. Comp. Neurol. 226, 111–140 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Pei, Y. C., Denchev, P. V., Hsiao, S. S., Craig, J. C. & Bensmaia, S. J. Convergence of submodality-specific input onto neurons in primary somatosensory cortex. J. Neurophysiol. 102, 1843–1853 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Handler, A. & Ginty, D. D. The mechanosensory neurons of touch and their mechanisms of activation. Nat. Rev. Neurosci. 22, 521–537 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Johnson, K. O. The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Bai, L. et al. Genetic identification of an expansive mechanoreceptor sensitive to skin stroking. Cell 163, 1783–1795 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Moehring, F. et al. Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. eLife 7, e31684 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Walcher, J. et al. Specialized mechanoreceptor systems in rodent glabrous skin. J. Physiol. 596, 4995–5016 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Neubarth, N. L. et al. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 368, eabb2751 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Lynn, B. & Shakhanbeh, J. Properties of Aδ high threshold mechanoreceptors in the rat hairy and glabrous skin and their response to heat. Neurosci. Lett. 85, 71–76 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Chapin, J. K. Laminar differences in sizes, shapes, and response profiles of cutaneous receptive fields in the rat SI cortex. Exp. Brain Res. 62, 549–559 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Enander, J. M. D. & Jörntell, H. Somatosensory cortical neurons decode tactile input patterns and location from both dominant and non-dominant digits. Cell Rep. 26, 3551–3560.e3554 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Maricich, S. M. et al. Merkel cells are essential for light-touch responses. Science 324, 1580–1582 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Hooks, B. M., Lin, J. Y., Guo, C. & Svoboda, K. Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex. J. Neurosci. 35, 4418–4426 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Luo, W., Enomoto, H., Rice, F. L., Milbrandt, J. & Ginty, D. D. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron 64, 841–856 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Kuehn, E. D., Meltzer, S., Abraira, V. E., Ho, C. Y. & Ginty, D. D. Tiling and somatotopic alignment of mammalian low-threshold mechanoreceptors. Proc. Natl Acad. Sci. USA 116, 9168–9177 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M. & Scanziani, M. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Bruno, R. M. & Simons, D. J. Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J. Neurosci. 22, 10966–10975 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Abraira, V. E. et al. The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell 168, 295–310.e219 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Li, L. et al. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147, 1615–1627 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Prsa, M., Morandell, K., Cuenu, G. & Huber, D. Feature-selective encoding of substrate vibrations in the forelimb somatosensory cortex. Nature 567, 384–388 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Johnson, K. O. & Hsiao, S. S. Neural mechanisms of tactual form and texture perception. Annu. Rev. Neurosci. 15, 227–250 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Saal, H. P. & Bensmaia, S. J. Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci. 37, 689–697 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Sathian, K. Tactile sensing of surface features. Trends Neurosci. 12, 513–519 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Choi, S. et al. Parallel ascending spinal pathways for affective touch and pain. Nature 587, 258–263 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    da Silva, S. et al. Proper formation of whisker barrelettes requires periphery-derived Smad4-dependent TGFβ signaling. Proc. Natl Acad. Sci. USA 108, 3395–3400 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Liu, Y. et al. Sexually dimorphic BDNF signaling directs sensory innervation of the mammary gland. Science 338, 1357–1360 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Shroyer, N. F. et al. Intestine-specific ablation of Mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132, 2478–2488 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Ramirez, A. et al. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 39, 52–57 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Rutlin, M. et al. The cellular and molecular basis of direction selectivity of Aδ-LTMRs. Cell 159, 1640–1651 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Wang, V. Y., Rose, M. F. & Zoghbi, H. Y. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48, 31–43 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Jun, J. J. et al. Real-time spike sorting platform for high-density extracellular probes with ground-truth validation and drift correction. Preprint at https://doi.org/10.1101/101030 (2017).

  • 40.

    Rodriguez, A. & Laio, A. Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Bartho, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608 (2004).

    PubMed 

    Google Scholar 

  • 43.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).

    MathSciNet 
    MATH 

    Google Scholar 

  • 44.

    Magri, C., Whittingstall, K., Singh, V., Logothetis, N. K. & Panzeri, S. A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neurosci. 10, 81 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Panzeri, S., Senatore, R., Montemurro, M. A. & Petersen, R. S. Correcting for the sampling bias problem in spike train information measures. J. Neurophysiol. 98, 1064–1072 (2007).

    PubMed 

    Google Scholar 

  • 46.

    Panzeri, S. & Treves, A. Analytical estimates of limited sampling biases in different information measures. Network 7, 87–107 (1996).

    PubMed 
    MATH 

    Google Scholar 

  • 47.

    Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Keller, D., Ero, C. & Markram, H. Cell densities in the mouse brain: a systematic review. Front. Neuroanat. 12, 83 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *