Strange IndiaStrange India


  • Peters, J.-M. & Nishiyama, T. Sister chromatid cohesion. Cold Spring Harb. Perspect. Biol. 4, a011130 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Uhlmann, F. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 17, 399–412 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Haering, C. H., Farcas, A.-M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Skibbens, R. V. Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166, 33–42 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samora, C. P. et al. Ctf4 links DNA replication with sister chromatid cohesion establishment by recruiting the Chl1 helicase to the replisome. Mol. Cell 63, 371–384 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciosk, R. et al. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243–254 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Murayama, Y. & Uhlmann, F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505, 367–371 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Minamino, M., Higashi, T. L., Bouchoux, C. & Uhlmann, F. Topological in vitro loading of the budding yeast cohesin ring onto DNA. Life Sci. Alliance 1, e201800143 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurokawa, Y. & Murayama, Y. DNA binding by the Mis4Scc2 loader promotes topological dna entrapment by the cohesin ring. Cell Rep. 33, 108357 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Chan, K.-L. et al. Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961–974 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murayama, Y. & Uhlmann, F. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163, 1628–1640 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez-Serra, L., Lengronne, A., Borges, V., Kelly, G. & Uhlmann, F. Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr. Biol. 23, 64–69 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Lengronne, A. et al. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol. Cell 23, 787–799 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Cameron, G. et al. Sister chromatid cohesion establishment during DNA replication termination. Preprint at bioRxiv https://doi.org/10.1101/2022.09.15.508094 (2022).

  • Murayama, Y., Samora, C. P., Kurokawa, Y., Iwasaki, H. & Uhlmann, F. Establishment of DNA-DNA interactions by the cohesin ring. Cell 172, 465–477.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, H., Boone, C. & Brown, G. W. Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics 176, 1417–1429 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borges, V., Smith, D. J., Whitehouse, I. & Uhlmann, F. An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122, 121–134 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srinivasan, M., Fumasoni, M., Petela, N. J., Murray, A. & Nasmyth, K. A. Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs. eLife 9, e56611 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rolef Ben-Shahar, T. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    PubMed 

    Google Scholar 

  • Rowland, B. D. et al. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763–774 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Beckouët, F. et al. Releasing activity disengages cohesin’s Smc3/Scc1 interface in a process blocked by acetylation. Mol. Cell 61, 563–574 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Hanna, J. S., Kroll, E. S., Lundblad, V. & Spencer, F. A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21, 3144–3158 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mayer, M. L. et al. Identification of protein complexes required for efficient sister chromatid cohesion. Mol. Biol. Cell 15, 1736–1745 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, H., Boone, C. & Klein, H. L. Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol. Cell. Biol. 24, 7082–7090 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeeles, J. T. P., Janska, A., Early, A. & Diffley, J. F. X. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65, 105–116 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mayer, M. L., Gygi, S. P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959–970 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Hizume, K., Endo, S., Muramatsu, S., Kobayashi, T. & Araki, H. DNA polymerase ε-dependent modulation of the pausing property of the CMG helicase at the barrier. Genes Dev. 32, 1315–1320 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deegan, T. D., Baxter, J., Bazán, M. Á. O., Yeeles, J. T. P. & Labib, K. P. M. Pif1-family helicases support fork convergence during DNA replication termination in eukaryotes. Mol. Cell 74, 231–244.e9 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stigler, J., Çamdere, G. Ö., Koshland, D. E. & Greene, E. C. Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep. 15, 988–998 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Higashi, T. L. et al. A structure-based mechanism for DNA entry into the cohesin ring. Mol. Cell 79, 917–933.e9 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devbhandari, S., Jiang, J., Kumar, C., Whitehouse, I. & Remus, D. Chromatin constrains the initiation and elongation of DNA replication. Mol. Cell 65, 131–141 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Kurat, C. F., Yeeles, J. T. P., Patel, H., Early, A. & Diffley, J. F. X. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol. Cell 65, 117–130 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muñoz, S., Minamino, M., Casas-Delucchi, C. S., Patel, H. & Uhlmann, F. A role for chromatin remodeling in cohesin loading onto chromosomes. Mol. Cell 74, 664–673. e5 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Farcas, A.-M., Uluocak, P., Helmhart, W. & Nasmyth, K. Cohesin’s concatenation of sister DNAs maintains their intertwining. Mol. Cell 44, 97–107 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sen, N. et al. Physical proximity of sister chromatids promotes Top2-dependent intertwining. Mol. Cell 64, 134–147 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mariezcurrena, A. & Uhlmann, F. Observation of DNA intertwining along authentic budding yeast chromosomes. Genes Dev. 31, 2151–2161 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rudra, S. & Skibbens, R. V. Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PLoS ONE 8, e75435 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shrestha, S. et al. Replisome-cohesin interaction provided by the Tof1-Csm3 and Mrc1 cohesin establishment factors. Chromosoma 132, 117–135 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cortone, G. et al. Interaction of the Warsaw breakage syndrome DNA helicase DDX11 with the replication fork-protection factor Timeless promotes sister chromatid cohesion. PLoS Genet. 14, e1007622 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Collier, J. E. et al. Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3. eLife 9, e59560 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, Y. V. et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931–941 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baretić, D. et al. Cryo-EM structure of the fork protection complex bound to CMG at a replication fork. Mol. Cell 78, 926–940.e13 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernius, J. & Marston, A. L. Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3. PLoS Genet. 5, e1000629 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Serra-Cardona, A. & Zhang, Z. Replication-coupled nucleosome assembly in the passage of epigenetic information and cell identity. Trends Biochem. Sci 43, 136–148 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Stewart-Morgan, K. R., Petryk, N. & Groth, A. Chromatin replication and epigenetic cell memory. Nat. Cell Biol. 22, 361–371 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Anderson, D. E., Losada, A., Erickson, H. P. & Hirano, T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156, 419–424 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, Z. et al. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat. Struct. Mol. Biol. 23, 217–224 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanke, M., Tahara, E., Huis In’t Veld, P. J. & Nishiyama, T. Cohesin acetylation and Wapl-Pds5 oppositely regulate translocation of cohesin along DNA. EMBO J. 35, 2686–2698 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srinivasan, M. et al. The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms. Cell 173, 1508–1519 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhardwaj, S., Schlackow, M., Rabajdova, M. & Gullerova, M. Transcription facilitates sister chromatid cohesion on chromosomal arms. Nucleic Acids Res. 44, 6676–6692 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hizume, K., Yagura, M. & Araki, H. Concerted interaction between origin recognition complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin binding. Genes Cell 18, 764–779 (2013).

    CAS 

    Google Scholar 

  • Murayama, Y., Kurokawa, Y., Mayanagi, K. & Iwasaki, H. Formation and branch migration of Holliday junctions mediated by eukaryotic recombinases. Nature 451, 1018–1021 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Tsutsui, Y. et al. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLoS Genet. 10, e1004542 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *