Strange India All Strange Things About India and world


  • 1.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS 

    Google Scholar 

  • 2.

    Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Preprint at https://arxiv.org/abs/1905.09749 (2019).

  • 4.

    Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    ADS 

    Google Scholar 

  • 5.

    Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

    Google Scholar 

  • 6.

    Davila-Rodriguez, J. et al. High-speed photodetection and microwave generation in a sub-100-mK environment. In 2019 Conf. Lasers and Electro-Optics (CLEO) SF2N.1 (2019)

  • 7.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 8.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    CAS 

    Google Scholar 

  • 11.

    Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).

    CAS 

    Google Scholar 

  • 12.

    Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    CAS 

    Google Scholar 

  • 13.

    Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    Tuckerman, D. B. et al. Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications. Supercond. Sci. Technol. 29, 084007 (2016).

    ADS 

    Google Scholar 

  • 18.

    Smith, J. P. et al. Flexible coaxial ribbon cable for high-density superconducting microwave device arrays. IEEE Trans. Appl. Supercond. 31, 2500105 (2021).

    CAS 

    Google Scholar 

  • 19.

    McDermott, R. et al. Quantum–classical interface based on single flux quantum digital logic. Quantum Sci. Technol. 3, 024004 (2018).

    ADS 

    Google Scholar 

  • 20.

    Leonard, E. et al. Digital coherent control of a superconducting qubit. Phys. Rev. Appl. 11, 014009 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Bardin, J. C. et al. Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K. IEEE J. Solid-State Circuits 54, 3043–3060 (2019).

    ADS 

    Google Scholar 

  • 22.

    Youssefi, A. et al. Cryogenic electro-optic interconnect for superconducting devices. Preprint at https://arxiv.org/abs/2004.04705 (2020).

  • 23.

    de Cea, M. et al. Photonic readout of superconducting nanowire single photon counting detectors. Sci. Rep. 10, 9470 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley-Interscience, 2007).

  • 26.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS 

    Google Scholar 

  • 27.

    Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    ADS 

    Google Scholar 

  • 28.

    Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    ADS 

    Google Scholar 

  • 29.

    Claudon, J., Balestro, F., Hekking, F. W. J. & Buisson, O. Coherent oscillations in a superconducting multilevel quantum system. Phys. Rev. Lett. 93, 187003 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Schuster, D. I. et al. a.c. Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Gambetta, J. et al. Qubit–photon interactions in a cavity: measurement-induced dephasing and number splitting. Phys. Rev. A 74, 042318 (2006).

    ADS 

    Google Scholar 

  • 32.

    Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Google Scholar 

  • 35.

    Smith, T. L., Anthony, P. J. & Anderson, A. C. Effect of neutron irradiation on the density of low-energy excitations in vitreous silica. Phys. Rev. B 17, 4997 (1978).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Gambetta, J. et al. Quantum trajectory approach to circuit QED: quantum jumps and the Zeno effect. Phys. Rev. A 77, 012112 (2008).

    ADS 

    Google Scholar 

  • 37.

    Clerk, A. A. & Utami, D. W. Using a qubit to measure photon-number statistics of a driven thermal oscillator. Phys. Rev. A 75, 042302 (2007).

    ADS 

    Google Scholar 

  • 38.

    Houck, A. A. et al. Controlling the spontaneous emission of a superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Nigg, S. E. et al. Black-box superconducting circuit quantization. Phys. Rev. Lett. 108, 240502 (2012).

    ADS 

    Google Scholar 

  • 40.

    Boyd, R. W. Radiometry and the Detection of Optical Radiation (Wiley, 1983).

  • 41.

    Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications 5th edn (Oxford Univ. Press, 1997).

  • 42.

    Lecocq, F. et al. Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier. Phys. Rev. Appl. 7, 024028 (2017).

    ADS 

    Google Scholar 

  • 43.

    W. Liu, R. Cendejas, H. Cao, Q. Hang, Z. Ji, and A. Nikolov, Uncooled low-bias uni-traveling carrier photodetectors. In 2013 Conf. Lasers and Electro-Optics (CLEO) Science and Innovations OSA Technical Digest CTh3L.2 (OSA 2013).

  • 44.

    Zielinski, E., Schweizer, H., Streubel, K., Eisele, H. & Weimann, G. Excitonic transitions and exciton damping processes in InGaAs/InP. J. Appl. Phys. 59, 2196 (1986).

    ADS 
    CAS 

    Google Scholar 

  • 45.

    Yeh, J.-H., LeFebvre, J., Premaratne, S., Wellstood, F. C. & Palmer, B. S. Microwave attenuators for use with quantum devices below 100 mK. J. Appl. Phys. 121, 224501 (2017).

    ADS 

    Google Scholar 

  • 46.

    Wang, Z. et al. Cavity attenuators for superconducting qubits. Phys. Rev. Appl. 11, 014031 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 47.

    Serniak, K. et al. Direct dispersive monitoring of charge parity in offset-charge-sensitive transmons. Phys. Rev. Appl. 12, 014052 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 48.

    Córcoles, A. D. et al. Protecting superconducting qubits from radiation. Appl. Phys. Lett. 99, 181906 (2011).

    ADS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.