Strange India All Strange Things About India and world


  • Wang, W. & Seale, P. Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 17, 691–702 (2016).

    Article 
    CAS 

    Google Scholar 

  • Cohen, P. & Kajimura, S. The cellular and functional complexity of thermogenic fat. Nat. Rev. Mol. Cell Biol. 22, 393–409 (2021).

    Article 
    CAS 

    Google Scholar 

  • Trayhurn, P. Brown adipose tissue—a therapeutic target in obesity? Front. Physiol. 9, 1672 (2018).

    Article 

    Google Scholar 

  • Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article 
    CAS 

    Google Scholar 

  • Rasmussen, A. T. The so‐called hibernating gland. J. Morphol. 38, 147–205 (1923).

    Article 

    Google Scholar 

  • Barneda, D. et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. eLife 4, e07485 (2015).

    Article 

    Google Scholar 

  • Nishimoto, Y. & Tamori, Y. CIDE family-mediated unique lipid droplet morphology in white adipose tissue and brown adipose tissue determines the adipocyte energy metabolism. J. Atherosclerosis Thrombosis 24, 989–998 (2017).

    Article 
    CAS 

    Google Scholar 

  • Xu, L., Zhou, L. & Li, P. CIDE proteins and lipid metabolism. Arter. Thromb. Vasc. Biol. 32, 1094–1098 (2012).

    Article 
    CAS 

    Google Scholar 

  • Gao, G. et al. Control of lipid droplet fusion and growth by CIDE family proteins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1197–1204 (2017).

    Article 
    CAS 

    Google Scholar 

  • Puri, V. et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc. Natl Acad. Sci. USA 105, 7833–7838 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gong, J. et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 195, 953–963 (2011).

    Article 
    CAS 

    Google Scholar 

  • Sun, Z. et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat. Commun. 4, 1594 (2013).

    Article 
    ADS 

    Google Scholar 

  • Lyu, X. et al. A gel-like condensation of Cidec generates lipid-permeable plates for lipid droplet fusion. Dev. Cell 56, 2592–2606.e7 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Z. et al. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat. Genet. 35, 49–56 (2003).

    Article 

    Google Scholar 

  • Nishimoto, Y. et al. Cell death-inducing DNA fragmentation factor A-like effector A and fat-specific protein 27β coordinately control lipid droplet size in brown adipocytes. J. Biol. Chem. 292, 10824–10834 (2017).

    Article 
    CAS 

    Google Scholar 

  • Li, J. Z. et al. Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56, 2523–2532 (2007).

    Article 
    CAS 

    Google Scholar 

  • Zhou, L. et al. Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 56, 95–107 (2012).

    Article 
    CAS 

    Google Scholar 

  • Xu, X., Park, J. G., So, J. S. & Lee, A. H. Transcriptional activation of Fsp27 by the liver-enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis. Hepatology 61, 857–869 (2015).

    Article 
    CAS 

    Google Scholar 

  • Puri, V. et al. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J. Biol. Chem. 282, 34213–34218 (2007).

    Article 
    CAS 

    Google Scholar 

  • Nishino, N. et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J. Clin. Invest. 118, 2808–2821 (2008).

    CAS 

    Google Scholar 

  • Toh, S. Y. et al. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of Fsp27 deficient mice. PLoS ONE 3, e2890 (2008).

    Article 
    ADS 

    Google Scholar 

  • Rubio-Cabezas, O. et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol. Med. 1, 280–287 (2009).

    Article 
    CAS 

    Google Scholar 

  • Ye, J. et al. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 9, 177–190 (2009).

    Article 
    CAS 

    Google Scholar 

  • Wu, L. Z. et al. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Sci. China Life Sci. 57, 107–116 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zhang, S. et al. Cidea control of lipid storage and secretion in mouse and human sebaceous glands. Mol. Cell. Biol. 34, 1827–1838 (2014).

    Article 

    Google Scholar 

  • Zeng, X. et al. Innervation of thermogenic adipose tissue via a calsyntenin 3β–S100b axis. Nature 569, 229–235 (2019).

    Article 
    ADS 

    Google Scholar 

  • Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).

    Article 
    CAS 

    Google Scholar 

  • Siersbæk, M. S. et al. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression. Mol. Cell. Biol. 32, 3452–3463 (2012).

    Article 

    Google Scholar 

  • Martell, J. D., Deerinck, T. J., Lam, S. S., Ellisman, M. H. & Ting, A. Y. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat. Protoc. 12, 1792–1816 (2017).

    Article 
    CAS 

    Google Scholar 

  • Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article 
    CAS 

    Google Scholar 

  • Yang, J. & Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 43, W174–W181 (2015).

    Article 
    CAS 

    Google Scholar 

  • Buchan, D. W. A. & Jones, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).

    Article 
    CAS 

    Google Scholar 

  • Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012).

    Article 

    Google Scholar 

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science (80-.). 373, 871–876 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456–475 (2016).

    Article 
    CAS 

    Google Scholar 

  • Stevenson, J., Huang, E. Y. & Olzmann, J. A. Endoplasmic reticulum-associated degradation and lipid homeostasis. Annual Rev. Nutrition 36, 511–542 (2016).

    Article 
    CAS 

    Google Scholar 

  • Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article 
    CAS 

    Google Scholar 

  • Roberts, M. A. & Olzmann, J. A. Protein quality control and lipid droplet metabolism. Annu. Rev. Cell Dev. Biol. 36, 115–139 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ruggiano, A., Mora, G., Buxó, L. & Carvalho, P. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. EMBO J. 35, 1644–1655 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bersuker, K. et al. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev. Cell 44, 97–112.e7 (2018).

    Article 
    CAS 

    Google Scholar 

  • Huang, E. Y. et al. A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates. Mol. Biol. Cell 29, 1021–1030 (2018).

    Article 

    Google Scholar 

  • Song, B. L., Sever, N. & DeBose-Boyd, R. A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 19, 829–840 (2005).

    Article 
    CAS 

    Google Scholar 

  • Guo, Y. et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657–661 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bagchi, D. P., Forss, I., Mandrup, S. & MacDougald, O. A. SnapShot: niche determines adipocyte character I. Cell Metabolism 27, 264–264.e1 (2018).

    Article 
    CAS 

    Google Scholar 

  • Oelkrug, R. et al. Brown fat in a protoendothermic mammal fuels eutherian evolution. Nat. Commun. 4, 2140 (2013).

    Article 
    ADS 

    Google Scholar 

  • Jespersen, N. Z. et al. Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol. Metab. 24, 30–43 (2019).

    Article 
    CAS 

    Google Scholar 

  • Plucińska, K. et al. Calsyntenin 3β is dynamically regulated by temperature in murine brown adipose and marks human multilocular fat. Front. Endocrinol. 11, 767 (2020).

    Article 

    Google Scholar 

  • Vergnes, L. et al. Adipocyte browning and higher mitochondrial function in periadrenal but not SC fat in pheochromocytoma. J. Clin. Endocrinol. Metab. 101, 4440–4448 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagnostics 14, 22–29 (2012).

    Article 
    CAS 

    Google Scholar 

  • Christianson, J. L., Boutet, E., Puri, V., Chawla, A. & Czech, M. P. Identification of the lipid droplet targeting domain of the Cidea protein. J. Lipid Res. 51, 3455–3462 (2010).

    Article 
    CAS 

    Google Scholar 

  • Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article 
    CAS 

    Google Scholar 

  • van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article 

    Google Scholar 

  • Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article 
    CAS 

    Google Scholar 

  • Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    Article 
    CAS 

    Google Scholar 

  • Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).

    Article 
    CAS 

    Google Scholar 

  • de Jong, J. M. A. et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat. Metab. 1, 830–843 (2019).

    Article 

    Google Scholar 

  • Sass, F. et al. TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Mol. Metab. 47, 101173 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schlein, C. et al. Endogenous fatty acid synthesis drives brown adipose tissue involution. Cell Rep. 34, 108624 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bai, N. et al. CLSTN3 gene variant associates with obesity risk and contributes to dysfunction in white adipose tissue. Mol. Metab. 63, 101531 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233.e17 (2018).

    Article 
    CAS 

    Google Scholar 

  • Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168–e168 (2014).

    Article 

    Google Scholar 

  • Dehairs, J., Talebi, A., Cherifi, Y. & Swinnen, J. V. CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing. Sci. Rep. 6, 28973 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mina, A. I. et al. CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab. 28, 656–666.e1 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chi, J. et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 27, 226–236.e3 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chi, J., Crane, A., Wu, Z. & Cohen, P. Adipo-clear: a tissue clearing method for three-dimensional imaging of adipose tissue. J. Vis. Exp. 2018, 58271 (2018).

    Google Scholar 

  • Richter, K. N. et al. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super‐resolution microscopy. EMBO J. 37, 139–159 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. Polybasic RKKR motif in the linker region of lipid droplet (LD)–associated protein CIDEC inhibits LD fusion activity by interacting with acidic phospholipids. J. Biol. Chem. 293, 19330–19343 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, J., Chua, B. T., Li, P. & Chen, F.-J. Lipid-exchange rate assay for lipid droplet fusion in live cells. Bio-Protocol 9, e3309 (2019).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *