Coop, J. D. et al. Extreme fire spread events and area burned under recent and future climate in the western USA. Glob. Ecol. Biogeogr. 31, 1949–1959 (2022).
Google Scholar
Juang, C. S. et al. Rapid growth of large forest fires drives the exponential response of annual forest-fire area to aridity in the western United States. Geophys. Res. Lett. 49, e2021GL097131 (2022).
Google Scholar
Keeley, J. E. & Syphard, A. D. Large California wildfires: 2020 fires in historical context. Fire Ecol. 17, 22 (2021).
Google Scholar
Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2021).
Google Scholar
Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).
Google Scholar
Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, 034025 (2018).
Google Scholar
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Google Scholar
Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.), pp. 1513–1766 (Cambridge Univ. Press, 2021).
Mandel, J. et al. Recent advances and applications of WRF–SFIRE. Nat. Hazards Earth Syst. Sci. 14, 2829–2845 (2014).
Google Scholar
Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).
Google Scholar
Goss, M. et al. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 15, 094016 (2020).
Google Scholar
Williams, A. P. et al. Observed impacts of Anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
Google Scholar
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
Google Scholar
Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).
Google Scholar
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
Google Scholar
van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).
Google Scholar
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of Anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
Google Scholar
Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).
Google Scholar
Wang, S. S.-C., Qian, Y., Leung, L. R. & Zhang, Y. Identifying key drivers of wildfires in the contiguous US using machine learning and game theory interpretation. Earths Future 9, e2020EF001910 (2021).
Google Scholar
Huang, Y., Jin, Y., Schwartz, M. W. & Thorne, J. H. Intensified burn severity in California’s northern coastal mountains by drier climatic condition. Environ. Res. Lett. 15, 104033 (2020).
Google Scholar
Elia, M. et al. Estimating the probability of wildfire occurrence in Mediterranean landscapes using Artificial Neural Networks. Environ. Impact Assess. Rev. 85, 106474 (2020).
Google Scholar
Satir, O., Berberoglu, S. & Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards Risk 7, 1645–1658 (2016).
Google Scholar
Werth, P. A. et. al. Synthesis of Knowledge of Extreme Fire Behavior: Volume 2 for Fire Behavior Specialists, Researchers, and Meteorologists. General Technical Report PNW-GTR-891 (U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2016).
Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett. 23, 669–672 (1996).
Google Scholar
Patricola, C. M. & Wehner, M. F. Anthropogenic influences on major tropical cyclone events. Nature 563, 339–346 (2018).
Google Scholar
Otto, F. E. L. Attribution of weather and climate events. Annu. Rev. Environ. Resour. 42, 627–646 (2017).
Google Scholar
French, N. H. F., Kasischke, E. S. & Williams, D. G. Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. J. Geophys. Res. 108, FFR 7-1–FFR 7-11 (2003).
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. J. Future area burned in Canada. Clim. Change 72, 1–16 (2005).
Google Scholar
Conard, S. G. et al. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim. Change 55, 197–211 (2002).
Google Scholar
Potter, B. E. & McEvoy, D. Weather factors associated with extremely large fires and fire growth days. Earth Interact. 25, 160–176 (2021).
Google Scholar
Gutierrez, A. A. et al. Wildfire response to changing daily temperature extremes in California’s Sierra Nevada. Sci. Adv. 7, eabe6417 (2021).
Google Scholar
Philip, S. et al. A protocol for probabilistic extreme event attribution analyses.Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).
Google Scholar
Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Stocker, T. F.), pp. 857–952 (Cambridge Univ. Press, 2013).
Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165, 43 (2021).
Google Scholar
Woollings, T. et al. Blocking and its response to climate change. Current Clim. Change Rep. 4, 287–300 (2018).
Google Scholar
Swain, D. L. A shorter, sharper rainy season amplifies California wildfire risk. Geophys. Res. Lett. 48, e2021GL092843 (2021).
Google Scholar
Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E. & Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl Acad. Sci. 118, e2111875118 (2021).
Google Scholar
Stephens, S. L. et al. Drought, tree mortality, and wildfire in forests adapted to frequent fire. BioScience 68, 77–88 (2018).
Google Scholar
Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).
Google Scholar
Ma, W. et al. Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences 18, 4005–4020 (2021).
Google Scholar