Strange India All Strange Things About India and world


  • 1.

    Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article 

    Google Scholar 

  • 2.

    Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017).

    Article 

    Google Scholar 

  • 3.

    Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity 51, 856–870 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Liu, P. S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Cortese, N. et al. Metabolome of pancreatic juice delineates distinct clinical profiles of pancreatic cancer and reveals a link between glucose metabolism and PD-1+ cells. Cancer Immunol. Res. 8, 493–505 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Gemta, L. F. et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8+ T cells. Sci. Immunol. 4, eaap9520 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Sinclair, L. V., Barthelemy, C. & Cantrell, D. A. Single cell glucose uptake assays: a cautionary tale. Immunometabolism 2, e200029 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Nair-Gill, E. et al. PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice. J. Clin. Invest. 120, 2005–2015 (2010).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Hesketh, R. L. et al. Magnetic resonance imaging is more sensitive than PET for detecting treatment-induced cell death-dependent changes in glycolysis. Cancer Res. 79, 3557–3569 (2019).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 (2017).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Mabuchi, S. et al. Pretreatment tumor-related leukocytosis misleads positron emission tomography-computed tomography during lymph node staging in gynecological malignancies. Nat. Commun. 11, 1364 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Yoshida, G. J. Beyond the Warburg effect: N-Myc contributes to metabolic reprogramming in cancer cells. Front. Oncol. 10, 791 (2020).

    Article 

    Google Scholar 

  • 21.

    Zhou, R. et al. [18F](2S,4R)4-Fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition. Cancer Res. 77, 1476–1484 (2017).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Schulte, M. L. et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24, 194–202 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Kilgour, M. K. et al. 1-Methylnicotinamide is an immune regulatory metabolite in human ovarian cancer. Sci. Adv. 7, eabe1174 (2021).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Cascone, T. et al. Increased tumor glycolysis characterizes immune resistance to adoptive t cell therapy. Cell Metab. 27, 977–987 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Li, W. et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab. 28, 87–103 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Chafe, S. C. et al. Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically. Cancer Immunol. Res. 7, 1064–1078 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24, 701–715 (2016).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Jeong, H. et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79, 795–806 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    O’Neil, R. T. et al. Transposon-modified antigen-specific T lymphocytes for sustained therapeutic protein delivery in vivo. Nat. Commun. 9, 1325 (2018).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Tracz, A., Mastri, M., Lee, C. R., Pili, R. & Ebos, J. M. L. Modeling spontaneous metastatic renal cell carcinoma (mRCC) in mice following nephrectomy. J. Vis. Exp. 86, 51485 (2014).

    Google Scholar 

  • 31.

    Parang, B., Barrett, C. W. & Williams, C. S. AOM/DSS model of colitis-associated cancer. Methods Mol. Biol. 1422, 297–307 (2016).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Becker, C. et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut 54, 950–954 (2005).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Hassanein, M. et al. Preclinical evaluation of 4-[18F]Fluoroglutamine PET to Assess ASCT2 expression in lung cancer. Mol. Imaging Biol. 18, 18–23 (2016).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Canouil, M. et al. NACHO: an R package for quality control of NanoString nCounter data. Bioinformatics 36, 970–971 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Lê, S. Josse, J. Husson, & F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *