Strange India All Strange Things About India and world


  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vergniory, M. G. et al. All topological bands of all stoichiometric materials. Preprint at https://arxiv.org/abs/2105.09954 (2021).

  • Călugăru, D. et al. General construction and topological classification of crystalline flat bands. Nat. Phys. 18, 185–189 (2022).

    Article 

    Google Scholar 

  • Kumar, P., Peotta, S., Takasu, Y., Takahashi, Y. & Törmä, P. Flat-band-induced non-Fermi-liquid behavior of multicomponent fermions. Phys. Rev. A 103, L031301 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    ADS 
    Article 

    Google Scholar 

  • Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Drozdov, A., Eremets, M., Troyan, I., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Drozdov, A. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    ADS 
    Article 

    Google Scholar 

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    ADS 
    Article 

    Google Scholar 

  • Sheng, D., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).

    Google Scholar 

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    CAS 
    Article 

    Google Scholar 

  • Peri, V., Song, Z.-D., Bernevig, B. A. & Huber, S. D. Fragile topology and flat-band superconductivity in the strong-coupling regime. Phys. Rev. Lett. 126, 027002 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rhim, J.-W., Kim, K. & Yang, B.-J. Quantum distance and anomalous Landau levels of flat bands. Nature 584, 59–63 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Xie, F., Song, Z., Lian, B. & Bernevig, B. A. Topology-bounded superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 124, 167002 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Y. Xu et al. Filling-enforced obstructed atomic insulators. Preprint at https://arxiv.org/abs/2106.10276 (2021).

  • Mielke, A. Exact ground states for the Hubbard model on the kagome lattice. J. Phys. A 25, 4335–4345 (1992).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Tasaki, H. From Nagaoka’s ferromagnetism to flat-band ferromagnetism and beyond: an introduction to ferromagnetism in the Hubbard model. Prog. Theor. Phys. 99, 489–548 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bergman, D. L., Wu, C. & Balents, L. Band touching from real-space topology in frustrated hopping models. Phys. Rev. B 78, 125104 (2008).

    ADS 
    Article 

    Google Scholar 

  • Liu, Z., Liu, F. & Wu, Y.-S. Exotic electronic states in the world of flat bands: from theory to material. Chin. Phys. B 23, 077308 (2014).

    ADS 
    Article 

    Google Scholar 

  • Ma, D.-S. et al. Spin–orbit-induced topological flat bands in line and split graphs of bipartite lattices. Phys. Rev. Lett. 125, 266403 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chiu, C. S., Ma, D.-S., Song, Z.-D., Bernevig, B. A. & Houck, A. A. Fragile topology in line-graph lattices with two, three, or four gapped flat bands. Phys. Rev. Res. 2, 043414 (2020).

    CAS 
    Article 

    Google Scholar 

  • Inorganic Crystal Structure Database (ICSD) (Fachinformationszentrum Karlsruhe, 2015); https://icsd.products.fiz-karlsruhe.de/.

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 
    Article 

    Google Scholar 

  • Ivantchev, S., Kroumova, E., Madariaga, G., Pérez-Mato, J. M. & Aroyo, M. I. SUBGROUPGRAPH: a computer program for analysis of group–subgroup relations between space groups. J. Appl. Crystallogr. 33, 1190–1191 (2000).

    CAS 
    Article 

    Google Scholar 

  • Ivantchev, S. et al. SUPERGROUPS—a computer program for the determination of the supergroups of the space groups. J. Appl. Crystallogr. 35, 511–512 (2002).

    CAS 
    Article 

    Google Scholar 

  • Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

    ADS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.