Strange IndiaStrange India


  • Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chu, Z. et al. Perovskite light‐emitting diodes with external quantum efficiency exceeding 22% via small‐molecule passivation. Adv. Mater. 33, 2007169 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, J. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photon. 15, 238–244 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lian, Y. et al. Ultralow-voltage operation of light-emitting diodes. Nat. Commun. 13, 3845 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santhanam, P., Gray, D. J. & Ram, R. J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Phys. Rev. Lett. 108, 097403 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Anaya, M. et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photon. 13, 818–821 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359, 679–684 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, Z., Lu, Y.-Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58–63 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, L. et al. Nanosecond‐pulsed perovskite light‐emitting diodes at high current density. Adv. Mater. 33, 2104867 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jariwala, S. et al. Local crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).

    Article 
    CAS 

    Google Scholar 

  • Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Han, Q. et al. Single crystal formamidinium lead Iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article 
    ADS 

    Google Scholar 

  • Draguta, S. et al. Spatially non-uniform trap state densities in solution-processed hybrid perovskite thin films. J. Phys. Chem. Lett. 7, 715–721 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Orri, J. F. et al. Using Using cathodoluminescence from continuous and pulsed-mode SEM to elucidate the nanostructure of hybrid halide perovskite materials. Microsc. Microanal. 28, 2006–2008 (2022).

    Article 

    Google Scholar 

  • Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, J. et al. Aryl-perfluoroaryl interaction in two-dimensional organic–inorganic hybrid perovskites boosts stability and photovoltaic efficiency. Acs. Mater. Lett. 1, 171–176 (2019).

    Article 
    CAS 

    Google Scholar 

  • Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mello, J. C., de, Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article 

    Google Scholar 

  • Orri, J. F., Lähnemann, J., Prestat, E., Johnstone, D. N. & Tappy, N. LumiSpy/lumispy: release v0.1.2. Zenodo https://doi.org/10.5281/zenodo.5722508 (2021).

  • Cho, C. et al. Electrical pumping of perovskite diodes: toward stimulated emission. Adv. Sci. 8, 2101663 (2021).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *