Strange IndiaStrange India


  • IEEE International Roadmap for Devices and Systems. https://irds.ieee.org/editions (2022).

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Radisavljevic, B., Radenovic, A., Brivio, J. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Quhe, R. et al. Sub-10 nm two-dimensional transistors: theory and experiment. Phys. Rep. 938, 1–72 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, L., Yang, L. & Guo, J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices 60, 4133–4139 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McDonnell, S. et al. Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880–2888 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gilardi, C. et al. Extended scale length theory for low-dimensional field-effect transistors. IEEE Trans. Electron Devices 69, 5302–5309 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Suryavanshi, S. V., English, C. D., Wong, H.-S. P. & Pop, E. Scaling theory of two-dimensional field effect transistors. Preprint at https://arxiv.org/abs/2105.10791 (2021).

  • Marin, E. G., Marian, D., Iannaccone, G. & Fiori, G. First-principles simulations of FETs based on two-dimensional InSe. IEEE Electron Device Lett. 39, 626–629 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schauble, K. et al. Uncovering the effects of metal contacts on monolayer MoS2. ACS Nano 14, 14798–14808 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139, 10216–10219 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 16, 7798–7806 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, L., Lee, R., Rao, S., Tsai, W. & Ye, P. D. in Proc. 2015 73rd Annual Device Research Conference (DRC) 237–238 (IEEE, 2015).

  • Pang, C.-S., Wu, P., Appenzeller, J. & Chen, Z. Sub-1nm EOT WS2-FET with IDS > 600 μA/μm at VDS = 1V and SS < 70 mV/dec at LG = 40 nm. IEDM Tech. Digest. 3.4.1–3.4.4 (2020).

  • Li, X. et al. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5, eaau3194 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article 

    Google Scholar 

  • Javey, A. et al. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Auth, C. et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects. IEDM Tech. Digest 29.1.1–29.1.4 (2017).

  • Convertino, C. et al. InGaAs-on-insulator FinFETs with reduced off-current and record performance. IEDM Tech. Digest 39.2.1–39.2.4 (2018).

  • Jeon, J. et al. The first observation of shot noise characteristics in 10-nm scale MOSFETs. VLSI Tech. Digest 48–49 (2009).

  • Liow, T. et al. Carrier transport characteristics of sub-30 nm strained N-channel FinFETs featuring silicon-carbon source/drain regions and methods for further performance enhancement. IEDM Tech. Digest 1–4 (2006).

  • Barral, V. et al. Experimental determination of the channel backscattering coefficient on 10–70 nm-metal-gate double-gate transistors. Solid State Electron. 51, 537–542 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Natarajan, S. et al. A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size. IEDM Tech. Digest 3.7.1–3.7.3 (2014).

  • Xie, R. et al. A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels. IEDM Tech. Digest 2.7.1–2.7.4 (2016).

  • Ahn, Y. & Shin, M. First-principles-based quantum transport simulations of monolayer indium selenide FETs in the ballistic limit. IEEE Trans. Electron Devices 64, 2129–2134 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Many-body effect and device performance limit of monolayer InSe. ACS Appl. Mater. Interfaces 10, 23344–23352 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, L. et al. Computational study of ohmic contact at bilayer InSe-metal interfaces: implications for field-effect transistors. ACS Appl. Nano Mater. 2, 6898–6908 (2019).

    Article 
    CAS 

    Google Scholar 

  • Uchida, K., Koga, J. & Takagi, S. Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs – Coulomb scattering, volume inversion, and /spl delta/T/sub SOI/-induced scattering. IEDM Tech. Digest 33.5.1–33.5.4 (2003).

  • Ahmadi, M. T. et al. Current–voltage characteristics of a silicon nanowire transistor. Microelectron. J. 40, 547–549 (2009).

    Article 
    CAS 

    Google Scholar 

  • Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, L. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29, 1702522 (2017).

    Article 

    Google Scholar 

  • Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ho, P. et al. High-mobility InSe transistors: the role of surface oxides. ACS Nano 11, 7362–7370 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wells, S. A. et al. Suppressing ambient degradation of exfoliated InSe nanosheet devices via seeded atomic layer deposition encapsulation. Nano Lett. 18, 7876–7882 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, J. et al. Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. npj 2D Mater. Appl. 3, 29 (2019).

    Article 

    Google Scholar 

  • Kang, S., Movva, H. C. P., Sanne, A., Rai, A. & Banerjee, S. K. Influence of electron-beam lithography exposure current level on the transport characteristics of graphene field effect transistors. J. Appl. Phys. 119, 124502 (2016).

    Article 
    ADS 

    Google Scholar 

  • Arora, V. K. et al. High-field distribution and mobility in semiconductors. Jpn. J. Appl. Phys. 24, 537 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chau, R. et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 4, 153–158 (2005).

    Article 
    ADS 

    Google Scholar 

  • Zhang, Z. Y. et al. High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Appl. Phys. Lett. 92, 133117 (2008).

    Article 
    ADS 

    Google Scholar 

  • Khakifirooz, A., Nayfeh, O. M. & Antoniadis, D. A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Devices 56, 1674–1680 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lundstrom, M. S. & Antoniadis, D. A. Compact models and the physics of nanoscale FETs. IEEE Trans. Electron Devices 61, 225–233 (2014).

    Article 
    ADS 

    Google Scholar 

  • Liu, Y., Luisier, M., Antoniadis, D., Majumdar, A. & Lundstron, M. S. On the interpretation of the ballistic injection velocity in deeply scaled MOSFETs. IEEE Trans. Electron Devices 59, 994–1001 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rahman, A. & Lundstrom, M. S. A compact scattering model for the nanoscale double-gate MOSFET. IEEE Trans. Electron Devices 49, 481–489 (2002).

    Article 
    ADS 

    Google Scholar 

  • Knoch, J. & Appenzeller, J. Impact of the channel thickness on the performance of Schottky barrier metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 81, 3082 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Z. et al. Statistical assessment of high-performance scaled double-gate transistors from monolayer WS2. ACS Nano 16, 14942–14950 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Brien, K. P. et al. Advancing 2D monolayer CMOS through contact, channel and interface engineering. IEDM Tech. Digest 7.1.1–7.1.4 (2021).

  • Chou, A.-S. et al. Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics. IEDM Tech. Digest 7.2.1–7.2.4 (2021).

  • Sohn, A. et al. Precise layer control and electronic state modulation of a transition metal dichalcogenide via phase-transition-induced growth. Adv. Mater. 34, 2103286 (2022).

    Article 
    CAS 

    Google Scholar 

  • Asselberghs, I. et al. Wafer-scale integration of double gated WS2-transistors in 300mm Si CMOS fab. IEDM Tech. Digest 40.2.1–40.2.4 (2020).

  • Chang, H. et al. Synthesis of large-area InSe monolayers by chemical vapor deposition. Small 14, 1802351 (2018).

    Article 

    Google Scholar 

  • Arutchelvan, G. et al. Impact of device scaling on the electrical properties of MoS2 field-effect transistors. Sci. Rep. 11, 6610 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, S. K. et al. Layered semiconducting 2D materials for future transistor applications. Small Struct. 2, 2000103 (2021).

    Article 
    CAS 

    Google Scholar 

  • Smithe, K. H., English, C. D., Suryavanshi, S. V. & Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 18, 4516–4522 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chou, A. S. et al. High on-state current in chemical vapor deposited monolayer MoS2 nFETs with Sn ohmic contacts. IEEE Electron Device Lett. 42, 272–275 (2020).

    Article 
    ADS 

    Google Scholar 

  • Patel, K. A., Grady, R. W., Smithe, K. K. H., Pop, E. & Sordan, R. Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2020).

    Article 
    CAS 

    Google Scholar 

  • Datta, S. Electronic Transport in Mesoscopic Systems Ch. 2 (Cambridge Univ. Press, 1995).

  • Xia, F. et al. The origins and limits of metal–graphene junction resistance. Nat. Nanotechnol. 6, 179–184 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Agarwal, T. et al. Benchmarking of MoS2 FETs with multigate Si-FET options for 5 nm and beyond. IEEE Trans. Electron Devices 62, 4051–4056 (2015).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *