IEEE International Roadmap for Devices and Systems. https://irds.ieee.org/editions (2022).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Google Scholar
Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Google Scholar
Radisavljevic, B., Radenovic, A., Brivio, J. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Google Scholar
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Google Scholar
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).
Google Scholar
Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).
Google Scholar
Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99 (2016).
Google Scholar
Quhe, R. et al. Sub-10 nm two-dimensional transistors: theory and experiment. Phys. Rep. 938, 1–72 (2021).
Google Scholar
Liu, L., Yang, L. & Guo, J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices 60, 4133–4139 (2013).
Google Scholar
Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).
Google Scholar
Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).
Google Scholar
Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
Google Scholar
Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).
Google Scholar
Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).
Google Scholar
Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).
Google Scholar
McDonnell, S. et al. Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880–2888 (2014).
Google Scholar
Gilardi, C. et al. Extended scale length theory for low-dimensional field-effect transistors. IEEE Trans. Electron Devices 69, 5302–5309 (2022).
Google Scholar
Suryavanshi, S. V., English, C. D., Wong, H.-S. P. & Pop, E. Scaling theory of two-dimensional field effect transistors. Preprint at https://arxiv.org/abs/2105.10791 (2021).
Marin, E. G., Marian, D., Iannaccone, G. & Fiori, G. First-principles simulations of FETs based on two-dimensional InSe. IEEE Electron Device Lett. 39, 626–629 (2018).
Google Scholar
Schauble, K. et al. Uncovering the effects of metal contacts on monolayer MoS2. ACS Nano 14, 14798–14808 (2020).
Google Scholar
Zhu, J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139, 10216–10219 (2017).
Google Scholar
Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).
Google Scholar
Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 16, 7798–7806 (2016).
Google Scholar
Yang, L., Lee, R., Rao, S., Tsai, W. & Ye, P. D. in Proc. 2015 73rd Annual Device Research Conference (DRC) 237–238 (IEEE, 2015).
Pang, C.-S., Wu, P., Appenzeller, J. & Chen, Z. Sub-1nm EOT WS2-FET with IDS > 600 μA/μm at VDS = 1V and SS < 70 mV/dec at LG = 40 nm. IEDM Tech. Digest. 3.4.1–3.4.4 (2020).
Li, X. et al. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5, eaau3194 (2019).
Google Scholar
Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Google Scholar
Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).
Google Scholar
Javey, A. et al. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).
Google Scholar
Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).
Google Scholar
Auth, C. et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects. IEDM Tech. Digest 29.1.1–29.1.4 (2017).
Convertino, C. et al. InGaAs-on-insulator FinFETs with reduced off-current and record performance. IEDM Tech. Digest 39.2.1–39.2.4 (2018).
Jeon, J. et al. The first observation of shot noise characteristics in 10-nm scale MOSFETs. VLSI Tech. Digest 48–49 (2009).
Liow, T. et al. Carrier transport characteristics of sub-30 nm strained N-channel FinFETs featuring silicon-carbon source/drain regions and methods for further performance enhancement. IEDM Tech. Digest 1–4 (2006).
Barral, V. et al. Experimental determination of the channel backscattering coefficient on 10–70 nm-metal-gate double-gate transistors. Solid State Electron. 51, 537–542 (2007).
Google Scholar
Natarajan, S. et al. A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size. IEDM Tech. Digest 3.7.1–3.7.3 (2014).
Xie, R. et al. A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels. IEDM Tech. Digest 2.7.1–2.7.4 (2016).
Ahn, Y. & Shin, M. First-principles-based quantum transport simulations of monolayer indium selenide FETs in the ballistic limit. IEEE Trans. Electron Devices 64, 2129–2134 (2017).
Google Scholar
Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).
Google Scholar
Wang, Y. et al. Many-body effect and device performance limit of monolayer InSe. ACS Appl. Mater. Interfaces 10, 23344–23352 (2018).
Google Scholar
Xu, L. et al. Computational study of ohmic contact at bilayer InSe-metal interfaces: implications for field-effect transistors. ACS Appl. Nano Mater. 2, 6898–6908 (2019).
Google Scholar
Uchida, K., Koga, J. & Takagi, S. Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs – Coulomb scattering, volume inversion, and /spl delta/T/sub SOI/-induced scattering. IEDM Tech. Digest 33.5.1–33.5.4 (2003).
Ahmadi, M. T. et al. Current–voltage characteristics of a silicon nanowire transistor. Microelectron. J. 40, 547–549 (2009).
Google Scholar
Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2016).
Google Scholar
Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).
Google Scholar
Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
Google Scholar
Xie, L. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29, 1702522 (2017).
Google Scholar
Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).
Google Scholar
Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).
Google Scholar
Ho, P. et al. High-mobility InSe transistors: the role of surface oxides. ACS Nano 11, 7362–7370 (2017).
Google Scholar
Wells, S. A. et al. Suppressing ambient degradation of exfoliated InSe nanosheet devices via seeded atomic layer deposition encapsulation. Nano Lett. 18, 7876–7882 (2018).
Google Scholar
Jiang, J. et al. Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. npj 2D Mater. Appl. 3, 29 (2019).
Google Scholar
Kang, S., Movva, H. C. P., Sanne, A., Rai, A. & Banerjee, S. K. Influence of electron-beam lithography exposure current level on the transport characteristics of graphene field effect transistors. J. Appl. Phys. 119, 124502 (2016).
Google Scholar
Arora, V. K. et al. High-field distribution and mobility in semiconductors. Jpn. J. Appl. Phys. 24, 537 (1985).
Google Scholar
Chau, R. et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 4, 153–158 (2005).
Google Scholar
Zhang, Z. Y. et al. High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Appl. Phys. Lett. 92, 133117 (2008).
Google Scholar
Khakifirooz, A., Nayfeh, O. M. & Antoniadis, D. A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Devices 56, 1674–1680 (2009).
Google Scholar
Lundstrom, M. S. & Antoniadis, D. A. Compact models and the physics of nanoscale FETs. IEEE Trans. Electron Devices 61, 225–233 (2014).
Google Scholar
Liu, Y., Luisier, M., Antoniadis, D., Majumdar, A. & Lundstron, M. S. On the interpretation of the ballistic injection velocity in deeply scaled MOSFETs. IEEE Trans. Electron Devices 59, 994–1001 (2012).
Google Scholar
Rahman, A. & Lundstrom, M. S. A compact scattering model for the nanoscale double-gate MOSFET. IEEE Trans. Electron Devices 49, 481–489 (2002).
Google Scholar
Knoch, J. & Appenzeller, J. Impact of the channel thickness on the performance of Schottky barrier metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 81, 3082 (2002).
Google Scholar
Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).
Google Scholar
Sun, Z. et al. Statistical assessment of high-performance scaled double-gate transistors from monolayer WS2. ACS Nano 16, 14942–14950 (2022).
Google Scholar
O’Brien, K. P. et al. Advancing 2D monolayer CMOS through contact, channel and interface engineering. IEDM Tech. Digest 7.1.1–7.1.4 (2021).
Chou, A.-S. et al. Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics. IEDM Tech. Digest 7.2.1–7.2.4 (2021).
Sohn, A. et al. Precise layer control and electronic state modulation of a transition metal dichalcogenide via phase-transition-induced growth. Adv. Mater. 34, 2103286 (2022).
Google Scholar
Asselberghs, I. et al. Wafer-scale integration of double gated WS2-transistors in 300mm Si CMOS fab. IEDM Tech. Digest 40.2.1–40.2.4 (2020).
Chang, H. et al. Synthesis of large-area InSe monolayers by chemical vapor deposition. Small 14, 1802351 (2018).
Google Scholar
Arutchelvan, G. et al. Impact of device scaling on the electrical properties of MoS2 field-effect transistors. Sci. Rep. 11, 6610 (2021).
Google Scholar
Su, S. K. et al. Layered semiconducting 2D materials for future transistor applications. Small Struct. 2, 2000103 (2021).
Google Scholar
Smithe, K. H., English, C. D., Suryavanshi, S. V. & Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 18, 4516–4522 (2018).
Google Scholar
McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).
Google Scholar
Chou, A. S. et al. High on-state current in chemical vapor deposited monolayer MoS2 nFETs with Sn ohmic contacts. IEEE Electron Device Lett. 42, 272–275 (2020).
Google Scholar
Patel, K. A., Grady, R. W., Smithe, K. K. H., Pop, E. & Sordan, R. Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2020).
Google Scholar
Datta, S. Electronic Transport in Mesoscopic Systems Ch. 2 (Cambridge Univ. Press, 1995).
Xia, F. et al. The origins and limits of metal–graphene junction resistance. Nat. Nanotechnol. 6, 179–184 (2011).
Google Scholar
Agarwal, T. et al. Benchmarking of MoS2 FETs with multigate Si-FET options for 5 nm and beyond. IEEE Trans. Electron Devices 62, 4051–4056 (2015).
Google Scholar