Strange India All Strange Things About India and world


  • Bunge, H.-P. et al. Time scales and heterogeneous structure in geodynamic Earth models. Science 280, 91–95 (1998).

    ADS 
    CAS 

    Google Scholar 

  • McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bercovici, D., Schubert, G. & Glatzmaier, G. A. Three-dimensional spherical models of convection in the Earth’s mantle. Science 244, 950–955 (1989).

    ADS 
    CAS 

    Google Scholar 

  • Campbell, I. H. Large igneous provinces and the mantle plume hypothesis. Elements 1, 265–269 (2005).

    Google Scholar 

  • Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–482 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom-up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Irving, E. Drift of the major continental blocks since the Devonian. Nature 270, 304–309 (1977).

    ADS 

    Google Scholar 

  • Merdith, A. S. et al. Extending full-plate tectonic models into deep time: linking the neoproterozoic and the phanerozoic. Earth-Sci. Rev. 214, 103477 (2021).

    Google Scholar 

  • Moresi, L., Betts, P. G., Miller, M. S. & Cayley, R. A. Dynamics of continental accretion. Nature 508, 245–248 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Domeier, M. & Torsvik, T. H. Plate tectonics in the late Paleozoic. Geosci. Front. 5, 303–350 (2014).

    Google Scholar 

  • Flament, N., Williams, S., Müller, R. D., Gurnis, M. & Bower, D. J. Correspondence: Reply to ‘Numerical modelling of the PERM anomaly and the Emeishan large igneous province’. Nat. Commun. 8, 822 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. X. et al. Decoding Earth’s rhythms: modulation of supercontinent cycles by longer superocean episodes. Precambrian Res. 323, 1–5 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Tarduno, J., Bunge, H.-P., Sleep, N. & Hansen, U. The bent Hawaiian–Emperor hotspot track: inheriting the mantle wind. Science 324, 50–53 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Hassan, R., Müller, R. D., Gurnis, M., Williams, S. E. & Flament, N. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature 533, 239–242 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frost, D. A. & Rost, S. The P-wave boundary of the large-low shear velocity province beneath the Pacific. Earth Planet. Sci. Lett. 403, 380–392 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Lynner, C. & Long, M. D. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophys. Res. Lett. 41, 3447–3454 (2014).

    ADS 

    Google Scholar 

  • Doucet, L. S. et al. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nat. Geosci. 13, 511–515 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Jackson, M., Becker, T. & Steinberger, B. Spatial characteristics of recycled and primordial reservoirs in the deep mantle. Geochem. Geophys. Geosyst. 22, e2020GC009525 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Mégnin, C. & Romanowicz, B. A. The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms. Geophys. J. Int. 143, 709–728 (2000).

    ADS 

    Google Scholar 

  • Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174, 195–212 (2008).

    ADS 

    Google Scholar 

  • Kustowski, B., Ekström, G. & Dziewoński, A. M. Anisotropic shear‐wave velocity structure of the Earth’s mantle: a global model. J. Geophys. Res. Solid Earth 113, B06306 (2008).

    ADS 

    Google Scholar 

  • Simmons, N. A., Forte, A. M., Boschi, L. & Grand, S. P. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. Solid Earth 115, B12310 (2010).

    ADS 

    Google Scholar 

  • Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    ADS 

    Google Scholar 

  • Auer, L., Boschi, L., Becker, T. W., Nissen‐Meyer, T. & Giardini, D. Savani: a variable resolution whole‐mantle model of anisotropic shear velocity variations based on multiple data sets. J. Geophys. Res. Solid Earth 119, 3006–3034 (2014).

    ADS 

    Google Scholar 

  • French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

    ADS 

    Google Scholar 

  • Davies, D., Goes, S. & Lau, H. C. P. In The Earth’s Heterogeneous Mantle (eds Khan, A. & Deschamps, F.) 441–477 (Springer, 2015).

  • Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Ni, S., Tan, E., Gurnis, M. & Helmberger, D. V. Sharp sides to the African superplume. Science 296, 1850–1852 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tkalčić, H., Young, M., Muir, J. B., Davies, D. R. & Mattesini, M. Strong, multi-scale heterogeneity in Earth’s lowermost mantle. Sci. Rep. 5, 18416 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davaille, A. & Romanowicz, B. Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics 39, e2020TC006265 (2020).

    ADS 

    Google Scholar 

  • Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).

    ADS 

    Google Scholar 

  • Austermann, J., Kaye, B. T., Mitrovica, J. X. & Huybers, P. A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophys. J. Int. 197, 1–9 (2014).

    ADS 

    Google Scholar 

  • Davies, D., Goes, S. & Sambridge, M. On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure. Earth Planet. Sci. Lett. 411, 121–130 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, S. & Rudolph, M. L. On the temporal evolution of long‐wavelength mantle structure of the Earth since the early Paleozoic. Geochem. Geophys. Geosyst. 16, 1599–1615 (2015).

    ADS 

    Google Scholar 

  • Flament, N., Williams, S., Müller, R., Gurnis, M. & Bower, D. J. Origin and evolution of the deep thermochemical structure beneath Eurasia. Nat. Commun. 8, 14164 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flament, N. Present-day dynamic topography and lower-mantle structure from palaeogeographically constrained mantle flow models. Geophys. J. Int. 216, 2158–2182 (2019).

    ADS 

    Google Scholar 

  • Johansson, L., Zahirovic, S. & Müller, R. D. The interplay between the eruption and weathering of large igneous provinces and the deep‐time carbon cycle. Geophys. Res. Lett. 45, 5380–5389 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. A. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68–77 (2012).

    ADS 

    Google Scholar 

  • Kolmogorov, A. Sulla determinazione empirica di una lgge di distribuzione. Giorn. Inst. Ital. Attuari 4, 83–91 (1933).

    Google Scholar 

  • Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet. Change 146, 226–250 (2016).

    ADS 

    Google Scholar 

  • Young, A. et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10, 989–1013 (2019).

    ADS 

    Google Scholar 

  • Rudolph, M. L. & Zhong, S. History and dynamics of net rotation of the mantle and lithosphere. Geochem. Geophys. Geosyst. 15, 3645–3657 (2014).

    ADS 

    Google Scholar 

  • Torsvik, T. H. et al. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl Acad. Sci. 111, 8735–8740 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lau, H. C. et al. Tidal tomography constrains Earth’s deep-mantle buoyancy. Nature 551, 321–326 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bower, D. J., Gurnis, M. & Seton, M. Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem. Geophys. Geosyst. 14, 44–63 (2013).

    ADS 

    Google Scholar 

  • Zhong, S., McNamara, A., Tan, E., Moresi, L. & Gurnis, M. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008).

    ADS 

    Google Scholar 

  • Gurnis, M. et al. Plate tectonic reconstructions with continuously closing plates. Comput. Geosci. 38, 35–42 (2012).

    ADS 

    Google Scholar 

  • Bower, D. J., Gurnis, M. & Flament, N. Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8–22 (2015).

    ADS 

    Google Scholar 

  • Stadler, G. et al. The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329, 1033–1038 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coltice, N., Husson, L., Faccenna, C. & Arnould, M. What drives tectonic plates? Sci. Adv. 5, eaax4295 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flament, N. et al. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth Planet. Sci. Lett. 387, 107–119 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Chopelas, A. & Boehler, R. Thermal expansivity in the lower mantle. Geophys. Res. Lett. 19, 1983–1986 (1992).

    ADS 

    Google Scholar 

  • Tosi, N., Yuen, D. A., de Koker, N. & Wentzcovitch, R. M. Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity. Phys. Earth Planet. Inter. 217, 48–58 (2013).

    ADS 

    Google Scholar 

  • Hassan, R., Flament, N., Gurnis, M., Bower, D. J. & Müller, R. D. Provenance of plumes in global convection models. Geochem. Geophys. Geosyst. 16, 1465–1489 (2015).

    ADS 

    Google Scholar 

  • Jaupart, C., Labrosse, S. & Mareschal, J. In Treatise on Geophysics. Volume 7: Mantle Dynamics 1st edn (ed. Bercovici, D.) 253–303 (Elsevier, 2007).

  • Steinberger, B. & Calderwood, A. R. Models of large‐scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int. 167, 1461–1481 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Billen, M. I. Modeling the dynamics of subducting slabs. Annu. Rev. Earth Planet. Sci. 36, 325–356 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Williams, S., Wright, N. M., Cannon, J., Flament, N. & Müller, R. D. Reconstructing seafloor age distributions in lost ocean basins. Geosci. Front. 12, 769–780 (2021).

    Google Scholar 

  • van der Meer, D. G., Spakman, W., van Hinsbergen, D. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2010).

    ADS 

    Google Scholar 

  • Hernlund, J. W. & Houser, C. On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    ADS 

    Google Scholar 

  • Ricard, Y., Richards, M., Lithgow-Bertelloni, C. & Le Stunff, Y. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993).

    ADS 

    Google Scholar 

  • Ahrens, J., Geveci, B. & Law, C. Paraview: an end-user tool for large data visualization. In The Visualization Handbook (eds Hansen, C. D. & Johnson, C. R.) 717–731 (Academic Press, 2005).

  • Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).

    ADS 

    Google Scholar 

  • Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012).

    ADS 

    Google Scholar 

  • Torsvik, T. H., Müller, R. D., van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Rev. Geophys. 46, RG3004 (2008).

    ADS 

    Google Scholar 

  • Torsvik, T. H. & Voo, R. V. D. Refining Gondwana and Pangea palaeogeography: estimates of Phanerozoic non-dipole (octupole) fields. Geophys. J. Int. 151, 771–794 (2002).

    ADS 

    Google Scholar 

  • Merdith, A. S. et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 50, 84–134 (2017).

    ADS 

    Google Scholar 

  • Domeier, M. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res. 36, 275–295 (2016).

    ADS 

    Google Scholar 

  • Domeier, M. Early Paleozoic tectonics of Asia: towards a full-plate model. Geosci. Front. 9, 789–862 (2018).

    Google Scholar 

  • MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symp. Mathematical Statistics and Probability: Volume 1 (eds Le Cam, L. M. & Neyman, J.) 281–297 (Univ. California Press, 1967).

  • Bryan, S. E. & Ernst, R. E. Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 86, 175–202 (2008).

    ADS 

    Google Scholar 

  • Coffin, M. F. et al. Large igneous provinces and scientific ocean drilling: Status quo and a look ahead. Oceanography 19, 150–160 (2006).

    Google Scholar 

  • Ernst, R. E. Large Igneous Provinces (Cambridge Univ. Press, 2014).

  • Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

    ADS 

    Google Scholar 

  • Knuth, D. E. Art of Computer Programming. Volume 2: Seminumerical Algorithms (Addison-Wesley, 2014).

  • Wessel, P., Smith, W. H., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: improved version released. Eos 94, 409–410 (2013).

    ADS 

    Google Scholar 

  • Hunter, J. D. Matplotlib: a 2D graphics environment. IEEE Ann. Hist. Comput. 9, 90–95 (2007).

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.