Bunge, H.-P. et al. Time scales and heterogeneous structure in geodynamic Earth models. Science 280, 91–95 (1998).
Google Scholar
McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).
Google Scholar
Bercovici, D., Schubert, G. & Glatzmaier, G. A. Three-dimensional spherical models of convection in the Earth’s mantle. Science 244, 950–955 (1989).
Google Scholar
Campbell, I. H. Large igneous provinces and the mantle plume hypothesis. Elements 1, 265–269 (2005).
Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).
Google Scholar
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).
Google Scholar
Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–482 (2013).
Google Scholar
Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom-up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).
Google Scholar
Irving, E. Drift of the major continental blocks since the Devonian. Nature 270, 304–309 (1977).
Google Scholar
Merdith, A. S. et al. Extending full-plate tectonic models into deep time: linking the neoproterozoic and the phanerozoic. Earth-Sci. Rev. 214, 103477 (2021).
Moresi, L., Betts, P. G., Miller, M. S. & Cayley, R. A. Dynamics of continental accretion. Nature 508, 245–248 (2014).
Google Scholar
Domeier, M. & Torsvik, T. H. Plate tectonics in the late Paleozoic. Geosci. Front. 5, 303–350 (2014).
Flament, N., Williams, S., Müller, R. D., Gurnis, M. & Bower, D. J. Correspondence: Reply to ‘Numerical modelling of the PERM anomaly and the Emeishan large igneous province’. Nat. Commun. 8, 822 (2017).
Google Scholar
Li, Z. X. et al. Decoding Earth’s rhythms: modulation of supercontinent cycles by longer superocean episodes. Precambrian Res. 323, 1–5 (2019).
Google Scholar
Tarduno, J., Bunge, H.-P., Sleep, N. & Hansen, U. The bent Hawaiian–Emperor hotspot track: inheriting the mantle wind. Science 324, 50–53 (2009).
Google Scholar
Hassan, R., Müller, R. D., Gurnis, M., Williams, S. E. & Flament, N. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature 533, 239–242 (2016).
Google Scholar
Frost, D. A. & Rost, S. The P-wave boundary of the large-low shear velocity province beneath the Pacific. Earth Planet. Sci. Lett. 403, 380–392 (2014).
Google Scholar
Lynner, C. & Long, M. D. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophys. Res. Lett. 41, 3447–3454 (2014).
Google Scholar
Doucet, L. S. et al. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nat. Geosci. 13, 511–515 (2020).
Google Scholar
Jackson, M., Becker, T. & Steinberger, B. Spatial characteristics of recycled and primordial reservoirs in the deep mantle. Geochem. Geophys. Geosyst. 22, e2020GC009525 (2021).
Google Scholar
Mégnin, C. & Romanowicz, B. A. The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms. Geophys. J. Int. 143, 709–728 (2000).
Google Scholar
Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174, 195–212 (2008).
Google Scholar
Kustowski, B., Ekström, G. & Dziewoński, A. M. Anisotropic shear‐wave velocity structure of the Earth’s mantle: a global model. J. Geophys. Res. Solid Earth 113, B06306 (2008).
Google Scholar
Simmons, N. A., Forte, A. M., Boschi, L. & Grand, S. P. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. Solid Earth 115, B12310 (2010).
Google Scholar
Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).
Google Scholar
Auer, L., Boschi, L., Becker, T. W., Nissen‐Meyer, T. & Giardini, D. Savani: a variable resolution whole‐mantle model of anisotropic shear velocity variations based on multiple data sets. J. Geophys. Res. Solid Earth 119, 3006–3034 (2014).
Google Scholar
French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).
Google Scholar
Davies, D., Goes, S. & Lau, H. C. P. In The Earth’s Heterogeneous Mantle (eds Khan, A. & Deschamps, F.) 441–477 (Springer, 2015).
Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).
Google Scholar
Ni, S., Tan, E., Gurnis, M. & Helmberger, D. V. Sharp sides to the African superplume. Science 296, 1850–1852 (2002).
Google Scholar
Tkalčić, H., Young, M., Muir, J. B., Davies, D. R. & Mattesini, M. Strong, multi-scale heterogeneity in Earth’s lowermost mantle. Sci. Rep. 5, 18416 (2015).
Google Scholar
Davaille, A. & Romanowicz, B. Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics 39, e2020TC006265 (2020).
Google Scholar
Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).
Google Scholar
Austermann, J., Kaye, B. T., Mitrovica, J. X. & Huybers, P. A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophys. J. Int. 197, 1–9 (2014).
Google Scholar
Davies, D., Goes, S. & Sambridge, M. On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure. Earth Planet. Sci. Lett. 411, 121–130 (2015).
Google Scholar
Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).
Google Scholar
Zhong, S. & Rudolph, M. L. On the temporal evolution of long‐wavelength mantle structure of the Earth since the early Paleozoic. Geochem. Geophys. Geosyst. 16, 1599–1615 (2015).
Google Scholar
Flament, N., Williams, S., Müller, R., Gurnis, M. & Bower, D. J. Origin and evolution of the deep thermochemical structure beneath Eurasia. Nat. Commun. 8, 14164 (2017).
Google Scholar
Flament, N. Present-day dynamic topography and lower-mantle structure from palaeogeographically constrained mantle flow models. Geophys. J. Int. 216, 2158–2182 (2019).
Google Scholar
Johansson, L., Zahirovic, S. & Müller, R. D. The interplay between the eruption and weathering of large igneous provinces and the deep‐time carbon cycle. Geophys. Res. Lett. 45, 5380–5389 (2018).
Google Scholar
Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).
Google Scholar
Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. A. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68–77 (2012).
Google Scholar
Kolmogorov, A. Sulla determinazione empirica di una lgge di distribuzione. Giorn. Inst. Ital. Attuari 4, 83–91 (1933).
Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet. Change 146, 226–250 (2016).
Google Scholar
Young, A. et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10, 989–1013 (2019).
Google Scholar
Rudolph, M. L. & Zhong, S. History and dynamics of net rotation of the mantle and lithosphere. Geochem. Geophys. Geosyst. 15, 3645–3657 (2014).
Google Scholar
Torsvik, T. H. et al. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl Acad. Sci. 111, 8735–8740 (2014).
Google Scholar
Lau, H. C. et al. Tidal tomography constrains Earth’s deep-mantle buoyancy. Nature 551, 321–326 (2017).
Google Scholar
Bower, D. J., Gurnis, M. & Seton, M. Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem. Geophys. Geosyst. 14, 44–63 (2013).
Google Scholar
Zhong, S., McNamara, A., Tan, E., Moresi, L. & Gurnis, M. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008).
Google Scholar
Gurnis, M. et al. Plate tectonic reconstructions with continuously closing plates. Comput. Geosci. 38, 35–42 (2012).
Google Scholar
Bower, D. J., Gurnis, M. & Flament, N. Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8–22 (2015).
Google Scholar
Stadler, G. et al. The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329, 1033–1038 (2010).
Google Scholar
Coltice, N., Husson, L., Faccenna, C. & Arnould, M. What drives tectonic plates? Sci. Adv. 5, eaax4295 (2019).
Google Scholar
Flament, N. et al. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth Planet. Sci. Lett. 387, 107–119 (2014).
Google Scholar
Chopelas, A. & Boehler, R. Thermal expansivity in the lower mantle. Geophys. Res. Lett. 19, 1983–1986 (1992).
Google Scholar
Tosi, N., Yuen, D. A., de Koker, N. & Wentzcovitch, R. M. Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity. Phys. Earth Planet. Inter. 217, 48–58 (2013).
Google Scholar
Hassan, R., Flament, N., Gurnis, M., Bower, D. J. & Müller, R. D. Provenance of plumes in global convection models. Geochem. Geophys. Geosyst. 16, 1465–1489 (2015).
Google Scholar
Jaupart, C., Labrosse, S. & Mareschal, J. In Treatise on Geophysics. Volume 7: Mantle Dynamics 1st edn (ed. Bercovici, D.) 253–303 (Elsevier, 2007).
Steinberger, B. & Calderwood, A. R. Models of large‐scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int. 167, 1461–1481 (2006).
Google Scholar
Billen, M. I. Modeling the dynamics of subducting slabs. Annu. Rev. Earth Planet. Sci. 36, 325–356 (2008).
Google Scholar
Williams, S., Wright, N. M., Cannon, J., Flament, N. & Müller, R. D. Reconstructing seafloor age distributions in lost ocean basins. Geosci. Front. 12, 769–780 (2021).
van der Meer, D. G., Spakman, W., van Hinsbergen, D. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2010).
Google Scholar
Hernlund, J. W. & Houser, C. On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).
Google Scholar
Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).
Google Scholar
Ricard, Y., Richards, M., Lithgow-Bertelloni, C. & Le Stunff, Y. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993).
Google Scholar
Ahrens, J., Geveci, B. & Law, C. Paraview: an end-user tool for large data visualization. In The Visualization Handbook (eds Hansen, C. D. & Johnson, C. R.) 717–731 (Academic Press, 2005).
Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).
Google Scholar
Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012).
Google Scholar
Torsvik, T. H., Müller, R. D., van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Rev. Geophys. 46, RG3004 (2008).
Google Scholar
Torsvik, T. H. & Voo, R. V. D. Refining Gondwana and Pangea palaeogeography: estimates of Phanerozoic non-dipole (octupole) fields. Geophys. J. Int. 151, 771–794 (2002).
Google Scholar
Merdith, A. S. et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 50, 84–134 (2017).
Google Scholar
Domeier, M. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res. 36, 275–295 (2016).
Google Scholar
Domeier, M. Early Paleozoic tectonics of Asia: towards a full-plate model. Geosci. Front. 9, 789–862 (2018).
MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symp. Mathematical Statistics and Probability: Volume 1 (eds Le Cam, L. M. & Neyman, J.) 281–297 (Univ. California Press, 1967).
Bryan, S. E. & Ernst, R. E. Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 86, 175–202 (2008).
Google Scholar
Coffin, M. F. et al. Large igneous provinces and scientific ocean drilling: Status quo and a look ahead. Oceanography 19, 150–160 (2006).
Ernst, R. E. Large Igneous Provinces (Cambridge Univ. Press, 2014).
Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).
Google Scholar
Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).
Google Scholar
Knuth, D. E. Art of Computer Programming. Volume 2: Seminumerical Algorithms (Addison-Wesley, 2014).
Wessel, P., Smith, W. H., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: improved version released. Eos 94, 409–410 (2013).
Google Scholar
Hunter, J. D. Matplotlib: a 2D graphics environment. IEEE Ann. Hist. Comput. 9, 90–95 (2007).