Strange India All Strange Things About India and world


  • 1.

    Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Yuan, L. & Huang, L. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 7, 7402–7408 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Paul, K. K., Kim, J.-H. & Lee, Y. H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 3, 178–192 (2021).

    CAS 

    Google Scholar 

  • 6.

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Baugher, B. W., Churchill, H. O., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    CAS 

    Google Scholar 

  • 13.

    Massicotte, M. et al. Dissociation of two-dimensional excitons in monolayer WSe2. Nat. Commun. 9, 1633 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Wen, X., Xu, W., Zhao, W., Khurgin, J. B. & Xiong, Q. Plasmonic hot carriers-controlled second harmonic generation in WSe2 bilayers. Nano Lett. 18, 1686–1692 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Livache, C. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Khan, Q. et al. Overcoming the electroluminescence efficiency limitations in quantum-dot light-emitting diodes. Adv. Opt. Mater. 7, 1900695 (2019).

    CAS 

    Google Scholar 

  • 17.

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Yuan, L., Wang, T., Zhu, T., Zhou, M. & Huang, L. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J. Phys. Chem. Lett. 8, 3371–3379 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Steinhoff, A. et al. Biexciton fine structure in monolayer transition metal dichalcogenides. Nat. Phys. 14, 1199–1204 (2018).

    CAS 

    Google Scholar 

  • 20.

    Zhu, X.-Y. How to draw energy level diagrams in excitonic solar cells. J. Phys. Chem. Lett. 5, 2283–2288 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Pólya, G. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann. 84, 149–160 (1921).

    MathSciNet 
    MATH 

    Google Scholar 

  • 22.

    Doyle, P. G. Application of Rayleigh’s Short-cut Method to Polya’s Recurrence Problem. PhD thesis, Dartmouth College (1982).

  • 23.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Chen, P. et al. Band evolution of two-dimensional transition metal dichalcogenides under electric fields. Appl. Phys. Lett. 115, 083104 (2019).

    ADS 

    Google Scholar 

  • 25.

    Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 26.

    Chow, C. M. E. et al. Monolayer semiconductor Auger detector. Nano Lett. 20, 5538–5543 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Luque, A. & Hegedus, S. Handbook of Photovoltaic Science and Engineering 2nd edn (John Wiley, 2011).

  • 29.

    Allen, T. G., Bullock, J., Yang, X., Javey, A. & De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Das, S., Gupta, G. & Majumdar, K. Layer degree of freedom for excitons in transition metal dichalcogenides. Phys. Rev. B 99, 165411 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    David, A., Young, N. G., Lund, C. & Craven, M. D. The physics of recombinations in III-nitride emitters. ECS J. Solid State Sci. Technol. 9, 016021 (2019).

    ADS 

    Google Scholar 

  • 33.

    Elbaz, G. A. et al. Unbalanced hole and electron diffusion in lead bromide perovskites. Nano Lett. 17, 1727–1732 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Chuang, S. L. Physics of Optoelectronic Devices (John Wiley, 1995).

  • 35.

    Passari, L. & Susi, E. Recombination mechanisms and doping density in silicon. J. Appl. Phys. 54, 3935–3937 (1983).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Altermatt, P. P., Schmidt, J., Heiser, G. & Aberle, A. G. Assessment and parameterisation of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon. J. Appl. Phys. 82, 4938–4944 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Richter, A., Glunz, S. W., Werner, F., Schmidt, J. & Cuevas, A. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012).

    ADS 

    Google Scholar 

  • 38.

    Kadlec, E. et al. Effects of electron doping level on minority carrier lifetimes in n-type mid-wave infrared InAs/InAs1−xSbx type-II superlattices. Appl. Phys. Lett. 109, 261105 (2016).

    ADS 

    Google Scholar 

  • 39.

    Cadiz, F. et al. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure. Appl. Phys. Lett. 112, 152106 (2018).

    ADS 

    Google Scholar 

  • 40.

    Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation. Phys. Rev. B 90, 155449 (2014).

    ADS 

    Google Scholar 

  • 41.

    Uddin, S. Z. et al. Neutral exciton diffusion in monolayer MoS2. ACS Nano 14, 13433–13440 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    CAS 

    Google Scholar 

  • 43.

    Chen, K. et al. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2. npj 2D Mater. Appl. 1, 15 (2017).

    ADS 

    Google Scholar 

  • 44.

    Liu, E. et al. Gate tunable dark trions in monolayer WSe2. Phys. Rev. Lett. 123, 027401 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Nguyen, P. V. et al. Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature 572, 220–223 (2019).

    CAS 

    Google Scholar 

  • 46.

    Tea, E. & Hin, C. Charge carrier transport and lifetimes in n-type and p-type phosphorene as 2D device active materials: an ab initio study. Phys. Chem. Chem. Phys. 18, 22706–22711 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794–2800 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Ye, Z. et al. Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers. Nat. Commun. 9, 3718 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Sundararaman, R. et al. JDFTx: Software for joint density-functional theory. SoftwareX 6, 278–284 (2017).

  • 50.

    Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

  • 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  • 52.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

  • 53.

    Groenendijk, D. J. et al. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 14, 5846–5852 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *