Strange India All Strange Things About India and world


  • 1.

    Cicone, C. et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 562, A21 (2014).

    Google Scholar 

  • 2.

    Woo, J.-H., Bae, H.-J., Son, D. & Karouzos, M. The prevalence of gas outflows in type 2 AGNs. Astrophys. J. 817, 108 (2016).

    ADS 

    Google Scholar 

  • 3.

    Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Oppenheimer, B. D. et al. EAGLE and Illustris-TNG predictions for resolved eROSITA X-ray observations of the circumgalactic medium around normal galaxies. Astrophys. J. 893, L24 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Davies, J. J., Crain, R. A., Oppenheimer, B. D. & Schaye, J. The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Mon. Not. R. Astron. Soc. 491, 4462–4480 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Harrison, C. M. et al. AGN outflows and feedback twenty years on. Nat. Astron. 2, 198–205 (2018).

    ADS 

    Google Scholar 

  • 8.

    Dashyan, G. et al. AGN-driven quenching of satellite galaxies. Mon. Not. R. Astron. Soc. 487, 5889–5901 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Veilleux, S., Maiolino, R., Bolatto, A. D. & Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 28, 2 (2020).

    ADS 

    Google Scholar 

  • 10.

    Cheung, E. et al. Suppressing star formation in quiescent galaxies with supermassive black hole winds. Nature 533, 504–508 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Martín-Navarro, I., Brodie, J. P., Romanowsky, A. J., Ruiz-Lara, T. & van de Ven, G. Black-hole-regulated star formation in massive galaxies. Nature 553, 307–309 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 12.

    Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Tempel, E. et al. Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation. Astron. Astrophys. 566, A1 (2014).

    Google Scholar 

  • 14.

    Ahn, C. P. et al. The Tenth Data Release of the Sloan Digital Sky Survey: first spectroscopic data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. 211 (Suppl.), 17 (2014).

    Google Scholar 

  • 15.

    Kauffmann, G. et al. Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 341, 33–53 (2003).

    ADS 

    Google Scholar 

  • 16.

    Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    Stoughton, C. et al. Sloan Digital Sky Survey: early data release. Astron. J. 123, 485–548 (2002).

    ADS 

    Google Scholar 

  • 18.

    Nelson, D. et al. The IllustrisTNG simulations: public data release. Comput. Astrophys. Cosmol. 6, 2 (2019).

    ADS 

    Google Scholar 

  • 19.

    Rodriguez-Gomez, V. et al. The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations. Mon. Not. R. Astron. Soc. 483, 4140–4159 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    Donnari, M. et al. Quenched fractions in the IllustrisTNG simulations: comparison with observations and other theoretical models. Preprint at https://arxiv.org/abs/2008.00004 (2020).

  • 21.

    Fujita, Y. Pre-processing of galaxies before entering a cluster. Publ. Astron. Soc. Jpn 56, 29–43 (2004).

    ADS 

    Google Scholar 

  • 22.

    Kauffmann, G., Li, C., Zhang, W. & Weinmann, S. A re-examination of galactic conformity and a comparison with semi-analytic models of galaxy formation. Mon. Not. R. Astron. Soc. 430, 1447–1456 (2013).

    ADS 

    Google Scholar 

  • 23.

    Nelson, D. et al. The illustris simulation: public data release. Astron. Comput. 13, 12–37 (2015).

    ADS 

    Google Scholar 

  • 24.

    Davé, R. et al. SIMBA: cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 486, 2827–2849 (2019).

    ADS 

    Google Scholar 

  • 25.

    McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007).

    ADS 

    Google Scholar 

  • 26.

    Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Gunn, J. E., Gott, I. & Richard, J. On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1 (1972).

    ADS 

    Google Scholar 

  • 28.

    Yun, K. et al. Jellyfish galaxies with the IllustrisTNG simulations—I. Gas-stripping phenomena in the full cosmological context. Mon. Not. R. Astron. Soc. 483, 1042–1066 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Maiolino, R. et al. Star formation inside a galactic outflow. Nature 544, 202–206 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Martín-Navarro, I., Burchett, J. N. & Mezcua, M. Quantifying the effect of black hole feedback from the central galaxy on the satellite populations of groups and clusters. Astrophys. J. 884, L45 (2019).

    ADS 

    Google Scholar 

  • 32.

    de Vaucouleurs, G. Recherches sur les nebuleuses extragalactiques. Ann. Astrophys. 11, 247 (1948).

    ADS 

    Google Scholar 

  • 33.

    Baes, M. et al. Efficient three-dimensional NLTE dust radiative transfer with SKIRT. Astrophys. J. 196 (Suppl.), 22 (2011).

    Google Scholar 

  • 34.

    Camps, P., Baes, M. & Saftly, W. Using 3D Voronoi grids in radiative transfer simulations. Astron. Astrophys. 560, A35 (2013).

    ADS 

    Google Scholar 

  • 35.

    Donnari, M. et al. The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. Mon. Not. R. Astron. Soc. 485, 4817–4840 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Huertas-Company, M. et al. The Hubble Sequence at z ~ 0 in the IllustrisTNG simulation with deep learning. Mon. Not. R. Astron. Soc. 489, 1859–1879 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Zanisi, L. et al. A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations. Mon. Not. R. Astron. Soc. 501, 4359–4382 (2020).

    ADS 

    Google Scholar 

  • 39.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306 (2013).

    ADS 

    Google Scholar 

  • 40.

    Simard, L., Mendel, J. T., Patton, D. R., Ellison, S. L. & McConnachie, A. W. A catalog of bulge+disk decompositions and updated photometry for 1.12 million galaxies in the Sloan Digital Sky Survey. Astrophys. J. 196 (Suppl.), 11 (2011).

    Google Scholar 

  • 41.

    Martín-Navarro, I., Burchett, J. N. & Mezcua, M. Black hole feedback and the evolution of massive early-type galaxies. Mon. Not. R. Astron. Soc. 491, 1311–1319 (2020).

    ADS 

    Google Scholar 

  • 42.

    van den Bosch, R. C. E. Unification of the fundamental plane and super massive black hole masses. Astrophys. J. 831, 134 (2016).

    ADS 

    Google Scholar 

  • 43.

    Martín-Navarro, I., Brodie, J. P., van den Bosch, R. C. E., Romanowsky, A. J. & Forbes, D. A. Stellar populations across the black hole mass-velocity dispersion relation. Astrophys. J. 832, L11 (2016).

    ADS 

    Google Scholar 

  • 44.

    Terrazas, B. A. et al. Quiescence correlates strongly with directly measured black hole mass in central galaxies. Astrophys. J. 830, L12 (2016).

    ADS 

    Google Scholar 

  • 45.

    Terrazas, B. A., Bell, E. F., Woo, J. & Henriques, B. M. B. Supermassive black holes as the regulators of star formation in central galaxies. Astrophys. J. 844, 170 (2017).

    ADS 

    Google Scholar 

  • 46.

    Terrazas, B. A. et al. The relationship between black hole mass and galaxy properties: Examining the black hole feedback model in IllustrisTNG. Preprint at https://arxiv.org/abs/1906.02747 (2019).

  • 47.

    Dullo, B. T., Bouquin, A. Y. K., Gil De Paz, A., Knapen, J. H. & Gorgas, J. The (black hole mass)-(color) relations for early- and late-type galaxies: red and blue sequences. Preprint at https://arxiv.org/abs/2006.10128 (2020).

  • 48.

    Li, Y. et al. Correlations between black holes and host galaxies in the Illustris and IllustrisTNG Simulations. Astrophys. J. 895, 102 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 49.

    Donnari, M. et al. Quenched fractions in the IllustrisTNG simulations: the roles of AGN feedback, environment, and pre-processing. Preprint at https://arxiv.org/abs/2008.00005 (2020).

  • 50.

    Genel, S. et al. Introducing the Illustris project: the evolution of galaxy populations across cosmic time. Mon. Not. R. Astron. Soc. 445, 175–200 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 51.

    Kauffmann, G. et al. The morphology and kinematics of the gaseous circumgalactic medium of Milky Way mass galaxies—II. Comparison of IllustrisTNG and Illustris simulation results. Mon. Not. R. Astron. Soc. 486, 4686–4700 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Lim, S. H. et al. Properties of the CGM and IGM: constraints on galaxy formation models from the Sunyaev-Zel’dovich effect. Preprint at https://arxiv.org/abs/2007.11583 (2020).

  • 53.

    Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    ADS 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *