Strange IndiaStrange India


  • Rao, M. K. et al. Review on persistent challenges of perovskite solar cells’ stability. Sol. Energy 218, 469–491 (2021).

    Article 
    ADS 

    Google Scholar 

  • Mohd Yusoff, A. R. B. et al. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ. Sci. 14, 2906–2953 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article 
    ADS 

    Google Scholar 

  • Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiencies. NREL https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf (2023).

  • Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article 
    ADS 

    Google Scholar 

  • Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ma, J.-P. et al. Defect-triggered phase transition in cesium lead halide perovskite nanocrystals. ACS Mater. Lett. 1, 185–191 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article 
    CAS 

    Google Scholar 

  • Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wright, A. D. et al. Intrinsic quantum confinement in formamidinium lead triiodide perovskite. Nat. Mater. 19, 1201–1206 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Doherty, T. A. S. et al. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374, 1598–1605 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J.-W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article 
    CAS 

    Google Scholar 

  • Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J.-W., Kim, H.-S. & Park, N.-G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. Anion-π interactions. Chem. Soc. Rev. 37, 68–83 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, X. et al. Halide anion–fullerene π noncovalent interactions: n-doping and a halide anion migration mechanism in p–i–n perovskite solar cells. J. Mater. Chem. A 5, 20720–20728 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kan, C. et al. Mitigating ion migration by polyethylene glycol-modified fullerene for perovskite solar cells with enhanced stability. ACS Energy Lett. 6, 3864–3872 (2021).

    Article 
    CAS 

    Google Scholar 

  • Garau, C. et al. Cation–π versus anion–π interactions: energetic, charge transfer, and aromatic aspects. J. Phys. Chem. A 108, 9423–9427 (2004).

    Article 
    CAS 

    Google Scholar 

  • Anstöter, C. S., Rogers, J. P. & Verlet, J. R. R. Spectroscopic determination of an anion–π bond strength. J. Am. Chem. Soc. 141, 6132–6135 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Stevenson, J. et al. Mayer bond order as a metric of complexation effectiveness in lead halide perovskite solutions. Chem. Mater. 29, 2435–2444 (2017).

    Article 
    CAS 

    Google Scholar 

  • Shargaieva, O., Kuske, L., Rappich, J., Unger, E. & Nickel, N. H. Building blocks of hybrid perovskites: a photoluminescence study of lead-iodide solution species. ChemPhysChem 21, 2327–2333 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barrit, D. et al. Room-temperature partial conversion of α-FAPbI3 perovskite phase via PbI2 solvation enables high-performance solar cells. Adv. Funct. Mater. 30, 1907442 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, H. et al. Bottom-up quasi-epitaxial growth of hybrid perovskite from solution process-achieving high-efficiency solar cells via template-guided crystallization. Adv. Mater. 33, 2100009 (2021).

    Article 
    CAS 

    Google Scholar 

  • Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  • Salzner, U. & Aydin, A. Improved prediction of properties of π-conjugated oligomers with range-separated hybrid density functionals. J. Chem. Theory Comput. 7, 2568–2583 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guha, S., Goodson, F. S., Corson, L. J. & Saha, S. Boundaries of anion/naphthalenediimide interactions: from anion–π interactions to anion-induced charge-transfer and electron-transfer phenomena. J. Am. Chem. Soc. 134, 13679–13691 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giese, M., Albrecht, M. & Rissanen, K. Anion–π interactions with fluoroarenes. Chem. Rev. 115, 8867–8895 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *