Strange IndiaStrange India


  • 1.

    Carlton, J. G., Jones, H. & Eggert, U. S. Membrane and organelle dynamics during cell division. Nat. Rev. Mol. Cell Biol. 21, 151–166 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529 (2007).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Kashatus, D. F. et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13, 1108–1115 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Chung, J. Y., Steen, J. A. & Schwarz, T. L. Phosphorylation-induced motor shedding is required at mitosis for proper distribution and passive inheritance of mitochondria. Cell Rep. 16, 2142–2155 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Altmann, K., Frank, M., Neumann, D., Jakobs, S. & Westermann, B. The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J. Cell Biol. 181, 119–130 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Simon, V. R., Swayne, T. C. & Pon, L. A. Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J. Cell Biol. 130, 345–354 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Rohn, J. L. et al. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Curr. Biol. 24, 2598–2605 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Field, C. M. & Lénárt, P. Bulk cytoplasmic actin and its functions in meiosis and mitosis. Curr. Biol. 21, R825–R830 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Kita, A. M. et al. Spindle-F-actin interactions in mitotic spindles in an intact vertebrate epithelium. Mol. Biol. Cell 30, 1645–1654 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Salvador-Gallego, R., Hoyer, M. J. & Voeltz, G. K. SnapShot: functions of endoplasmic reticulum membrane contact sites. Cell 171, 1224–1224 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Lu, L., Ladinsky, M. S. & Kirchhausen, T. Cisternal organization of the endoplasmic reticulum during mitosis. Mol. Biol. Cell 20, 3471–3480 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Mitsushima, M. et al. Revolving movement of a dynamic cluster of actin filaments during mitosis. J. Cell Biol. 191, 453–462 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Moore, A. S., Wong, Y. C., Simpson, C. L. & Holzbaur, E. L. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks. Nat. Commun. 7, 12886 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Kast, D. J., Zajac, A. L., Holzbaur, E. L., Ostap, E. M. & Dominguez, R. WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 25, 1791–1797 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Heinzen, R. A., Hayes, S. F., Peacock, M. G. & Hackstadt, T. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect. Immun. 61, 1926–1935 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Bernardini, M. L., Mounier, J., d’Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl Acad. Sci. USA 86, 3867–3871 (1989).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Haglund, C. M., Choe, J. E., Skau, C. T., Kovar, D. R. & Welch, M. D. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12, 1057–1063 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Nishimura, Y. et al. The formin inhibitor, SMIFH2, inhibits members of the myosin superfamily. Preprint at https://doi.org/10.1101/2020.08.30.274613 (2020).

  • 22.

    Manor, U., Bartholomew, S., Golani, G. & Christenson, E. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4, e08828 (2015).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Chhabra, E. S. & Higgs, H. N. INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J. Biol. Chem. 281, 26754–26767 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Vincent, A. E. et al. Subcellular origin of mitochondrial DNA deletions in human skeletal muscle. Ann. Neurol. 84, 289–301 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Katajisto, P. et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Aryaman, J., Hoitzing, H., Burgstaller, J. P., Johnston, I. G. & Jones, N. S. Mitochondrial heterogeneity, metabolic scaling and cell death. BioEssays 39, 1700001 (2017).

    Article 

    Google Scholar 

  • 28.

    McFaline-Figueroa, J. R. et al. Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10, 885–895 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Rué, P. & Martinez Arias, A. Cell dynamics and gene expression control in tissue homeostasis and development. Mol. Syst. Biol. 11, 792 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Stewart, J. B. & Chinnery, P. F. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat. Rev. Genet. 22, 106–118 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Fernandopulle, M. S. et al. Transcription factor-mediated differentiation of human iPSCs into neurons. Curr. Protoc. Cell Biol. 79, e51 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Simpson, C. L., Kojima, S. & Getsios, S. RNA interference in keratinocytes and an organotypic model of human epidermis. Methods Mol. Biol. 585, 127–146 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Chozinski, T. J. et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485–488 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Guo, Y. et al. visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods 7, 418–419 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Steger, C. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 20, 113–125 (1998).

    Article 

    Google Scholar 

  • 40.

    Püspöki, Z., Storath, M., Sage, D. & Unser, M. Transforms and operators for directional bioimage analysis: a survey. Adv. Anat. Embryol. Cell Biol. 219, 69–93 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, https://doi.org/10.18637/jss.v031.i10 (2009).

  • 42.

    Upton, G. & Mardia, K. Statistics of directional data. J. R. Stat. Soc. A 136, 262–263 (1973).

    Article 

    Google Scholar 

  • 43.

    Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Wait, E., Winter, M. & Cohen, A. R. Hydra image processor: 5-D GPU image analysis library with MATLAB and Python wrappers. Bioinformatics 35, 5393–5395 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Tarantino, N. et al. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J. Cell Biol. 204, 231–245 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Monnier, N. et al. Bayesian approach to MSD-based analysis of particle motion in live cells. Biophys. J. 103, 616–626 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Weber, S. C., Thompson, M. A., Moerner, W. E., Spakowitz, A. J. & Theriot, J. A. Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophys. J. 102, 2443–2450 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Quintero, O. A. et al. Human Myo19 is a novel myosin that associates with mitochondria. Curr. Biol. 19, 2008–2013 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Ortega, F. E., Koslover, E. F. & Theriot, J. A. Listeria monocytogenes cell-to-cell spread in epithelia is heterogeneous and dominated by rare pioneer bacteria. eLife 8, e40032 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *