Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 3 (Cambridge Univ. Press, 2021).
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).
Google Scholar
Yamamoto, A. et al. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long‐term global warming. Glob. Biogeochem. Cycles 29, 1801–1815 (2015).
Google Scholar
Fu, W., Primeau, F., Keith Moore, J., Lindsay, K. & Randerson, J. T. Reversal of increasing tropical ocean hypoxia trends with sustained climate warming. Glob. Biogeochem. Cycles 32, 551–564 (2018).
Google Scholar
Frölicher, T. L. et al. Contrasting upper and deep ocean oxygen response to protracted global warming. Glob. Biogeochem. Cycles 34, e2020GB006601 (2020).
Google Scholar
Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).
Google Scholar
Deutsch, C. et al. Centennial changes in North Pacific anoxia linked to tropical trade winds. Science 345, 665–668 (2014).
Google Scholar
Stramma, L. & Schmidtko, S. Tropical deoxygenation sites revisited to investigate oxygen and nutrient trends. Ocean Sci. 17, 833–847 (2021).
Google Scholar
Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).
Google Scholar
Steinthorsdottir, M., Jardine, P. E. & Rember, W. C. Near‐future pCO2 during the hot Miocene Climatic Optimum. Paleoceanogr. Paleoclimatol. 36, e2020PA003900 (2021).
Google Scholar
Lu, Z., Jenkyns, H. C. & Rickaby, R. E. M. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38, 1107–1110 (2010).
Google Scholar
Ren, H., Sigman, D. M., Thunell, R. C. & Prokopenko, M. G. Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. Limnol. Oceanogr. 57, 1011–1024 (2012).
Google Scholar
Lu, W. et al. Refining the planktic foraminiferal I/Ca proxy: results from the Southeast Atlantic Ocean. Geochim. Cosmochim. Acta 287, 318–327 (2020).
Google Scholar
Hardisty, D. S. et al. Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone. Earth Planet. Sci. Lett. 554, 116676 (2021).
Google Scholar
Rue, E. L., Smith, G. J., Cutter, G. A. & Bruland, K. W. The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Res. I Oceanogr. Res. Pap. 44, 113–134 (1997).
Google Scholar
Chance, R., Baker, A. R., Carpenter, L. & Jickells, T. D. The distribution of iodide at the sea surface. Environ. Sci. Process. Impacts 16, 1841–1859 (2014).
Google Scholar
Kast, E. R. et al. Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science 364, 386–389 (2019).
Google Scholar
Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).
Google Scholar
Smart, S. M. et al. Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-proxy in the Sargasso Sea. Geochim. Cosmochim. Acta 235, 463–482 (2018).
Google Scholar
Zhou, X., Hess, A. V., Bu, K., Sagawa, T. & Rosenthal, Y. Simultaneous determination of I/Ca and other elemental ratios in foraminifera using sector field ICP-MS. Geochem. Geophys. Geosyst. 23, e2022GC010660 (2022).
Google Scholar
Jickells, T. D., Boyd, S. S. & Knap, A. H. Iodine cycling in the Sargasso Sea and the Bermuda inshore waters. Mar. Chem. 24, 61–82 (1988).
Google Scholar
Moriyasu, R., Evans, N., Bolster, K. M., Hardisty, D. S. & Moffett, J. W. The distribution and redox speciation of iodine in the eastern tropical North Pacific Ocean. Glob. Biogeochem. Cycles 34, e2019GB006302 (2020).
Google Scholar
Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).
Google Scholar
Sigman, D. M. et al. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Glob. Biogeochem. Cycles 19, GB4022 (2005).
Google Scholar
O’Dea, A. et al. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883 (2016).
Google Scholar
García, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).
Google Scholar
Yan, Q. et al. Large shift of the Pacific Walker Circulation across the Cenozoic. Natl Sci. Rev. 8, nwaa101 (2021).
Google Scholar
Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).
Google Scholar
Nathan, S. A. & Leckie, R. M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (~13.2–5.8 Ma): role of sea-level change and implications for equatorial circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 274, 140–159 (2009).
Google Scholar
Tian, J., Ma, W., Lyle, M. W. & Shackford, J. K. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion. Earth Planet. Sci. Lett. 406, 72–80 (2014).
Google Scholar
Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116 (1994).
Google Scholar
Cortese, G., Gersonde, R., Hillenbrand, C.-D. & Kuhn, G. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth Planet. Sci. Lett. 224, 509–527 (2004).
Google Scholar
Lyle, M. & Baldauf, J. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338: burial, production, and diatom community. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433, 106–128 (2015).
Google Scholar
Holbourn, A. et al. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42, 19–22 (2014).
Google Scholar
Kochhann, K. G. D., Holbourn, A., Kuhnt, W. & Xu, J. Eastern equatorial Pacific benthic foraminiferal distribution and deep water temperature changes during the early to middle Miocene. Mar. Micropaleontol. 133, 28–39 (2017).
Google Scholar
Wu, M. et al. A very likely weakening of Pacific Walker Circulation in constrained near-future projections. Nat. Commun. 12, 6502 (2021).
Google Scholar
Schlitzer, R. Ocean Data View. https://odv.awi.de/ (2021).
Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).
Google Scholar
Olsen, A. et al. GLODAPv2.2019 – an update of GLODAPv2. Earth Syst. Sci. Data 11, 1437–1461 (2019).
Google Scholar
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A. & Andersen, N. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet. Sci. Lett. 261, 534–550 (2007).
Google Scholar
Miller, K. G., Feigenson, M. D., Wright, J. D. & Clement, B. M. Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6, 33–52 (1991).
Google Scholar
Sosdian, S. M. & Lear, C. H. Initiation of the Western Pacific Warm Pool at the Middle Miocene Climate Transition? Paleoceanogr. Paleoclimatol. 35, e2020PA003920 (2020).
Google Scholar
Holbourn, A. et al. Does Antarctic glaciation force migration of the tropical rain belt? Geology 38, 783–786 (2010).
Google Scholar
Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L. & Lear, C. H. Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey Event. Nat. Commun. 11, 134 (2020).
Google Scholar
Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S. & Meckler, A. N. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nat. Geosci. 13, 634–639 (2020).
Google Scholar
Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985).
Google Scholar
Rosenthal, Y., Boyle, E. A. & Labeyrie, L. Last Glacial Maximum paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal cadmium. Paleoceanography 12, 787–796 (1997).
Google Scholar
Rosenthal, Y., Field, M. P. & Sherrell, R. M. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 71, 3248–3253 (1999).
Google Scholar
Winkelbauer, H. et al. Foraminifera iodine to calcium ratios: approach and cleaning. Geochem. Geophys. Geosyst. 22, e2021GC009811 (2021).
Google Scholar
Fox, L. R., Wade, B. S., Holbourn, A., Leng, M. J. & Bhatia, R. Temperature gradients across the Pacific Ocean during the Middle Miocene. Paleoceanogr. Paleoclimatol. 36, e2020PA003924 (2021).
Google Scholar
Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanogr. Paleoclimatol. 18, 1050 (2003).
Google Scholar
Rosenthal, Y., Bova, S. & Zhou, X. A user guide for choosing planktic foraminiferal Mg/Ca-temperature calibrations. Paleoceanogr. Paleoclimatol. 37, e2022PA004413 (2022).
Google Scholar
Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca. Paleoceanogr. Paleoclimatol. 27, PA4205 (2012).
Google Scholar
Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).
Google Scholar
Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).
Google Scholar
Casciotti, K. L., Sigman, D. M., Hastings, M. G. & Bo, J. K. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912 (2002).
Google Scholar
McIlvin, M. R. & Casciotti, K. L. Technical updates to the bacterial method for nitrate isotopic analyses. Anal. Chem. 83, 1850–1856 (2011).
Google Scholar
Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365–1383 (2016).
Google Scholar
Leichliter, J. N. et al. Nitrogen isotopes in tooth enamel record diet and trophic level enrichment: results from a controlled feeding experiment. Chem. Geol. 563, 120047 (2021).
Google Scholar
Shipboard Scientific Party. Site 845. in Proceedings of the Ocean Drilling Program, Initial Reports Vol. 138 (eds Mayer, L. et al.) 189–263 (Ocean Drilling Program, 1992).
Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. Solid Earth 96, 6829–6848 (1991).
Google Scholar
Vincent, E. & Toumarkine, M. Data report: Miocene planktonic foraminifers from the eastern equatorial Pacific. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 138 (eds Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A. & van Andel, T. H.) 895–907 (Ocean Drilling Program, 1995).
Zhou, X., Thomas, E., Rickaby, R. E. M., Winguth, A. M. E. & Lu, Z. I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography 29, 964–975 (2014).
Google Scholar
Hardisty, D. S. et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet. Sci. Lett. 463, 159–170 (2017).
Google Scholar
van Raden, U. J., Groeneveld, J., Raitzsch, M. & Kucera, M. Mg/Ca in the planktonic foraminifera Globorotalia inflata and Globigerinoides bulloides from Western Mediterranean plankton tow and core top samples. Mar. Micropaleontol. 78, 101–112 (2011).
Google Scholar
Stainbank, S. et al. Assessing the impact of diagenesis on foraminiferal geochemistry from a low latitude, shallow-water drift deposit. Earth Planet. Sci. Lett. 545, 116390 (2020).
Google Scholar
Martinez-Garcia, A. et al. Laboratory assessment of the impact of chemical oxidation, mineral dissolution, and heating on the nitrogen isotopic composition of fossil-bound organic matter. Geochem. Geophys. Geosyst. 23, e2022GC010396 (2022).
Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds) Geologic Time Scale 2020 Vol. 2 (Elsevier, 2020).
Barron, J. A. Planktonic marine diatom record of the past 18 My: appearances and extinctions in the Pacific and Southern Oceans. Diatom Res. 18, 203–224 (2003).
Google Scholar
National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS). Geo-polar blended 5 km SST analysis for the full globe (2021).
Shevenell, A. E. & Kennett, J. P. in Geophysical Monograph Series Vol. 151 (eds Exon, N. F., Kennett, J. P. & Malone, M. J.) 235–251 (American Geophysical Union, 2004).
Shipboard Scientific Party. Site 1171. in Proceedings of the Ocean Drilling Program, Initial Reports (ed. Scroggs, J. M.) 176 (2001).
Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–1770 (2004).
Google Scholar