Strange India All Strange Things About India and world


  • Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    Google Scholar 

  • Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203–206 (2011).

    PubMed 

    Google Scholar 

  • Burrows, D. N. et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Levan, A. J. et al. An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199–202 (2011).

    PubMed 

    Google Scholar 

  • Zauderer, B. A. et al. Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451. Nature 476, 425–428 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Cenko, S. B. et al. Swift J2058.4+0516: discovery of a possible second relativistic tidal disruption flare? Astrophys. J. 753, 77 (2012).

    Google Scholar 

  • Brown, G. C. et al. Swift J1112.2-8238: a candidate relativistic tidal disruption flare. Mon. Not. R. Astron. Soc. 452, 4297–4306 (2015).

    CAS 

    Google Scholar 

  • Pasham, D. R. et al. A multiwavelength study of the relativistic tidal disruption candidate Swift J2058.4+0516 at late times. Astrophys. J. 805, 68 (2015).

    Google Scholar 

  • Yuan, Q., Wang, Q. D., Lei, W.-H., Gao, H. & Zhang, B. Catching jetted tidal disruption events early in millimetre. Mon. Not. R. Astron. Soc. 461, 3375–3384 (2016).

    CAS 

    Google Scholar 

  • Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pacif. 131, 078001 (2019).

    Google Scholar 

  • Sun, H., Zhang, B. & Li, Z. Extragalactic high-energy transients: event rate densities and luminosity functions. Astrophys. J. 812, 33 (2015).

    Google Scholar 

  • Andreoni, I. et al. Fast-transient searches in real time with ZTFReST: identification of three optically discovered gamma-ray burst afterglows and new constraints on the kilonova rate. Astrophys. J. 918, 63 (2021).

    CAS 

    Google Scholar 

  • Pasham, D., Gendreau, K., Arzoumanian, Z. & Cenko, B. ZTF22aaajecp/AT2022cmc: NICER X-ray detection. GCN Circ. 31601, 1 (2022).

    Google Scholar 

  • Perley, D. A. ZTF22aaajecp/AT2022cmc: VLA radio detection. GCN Circ. 31592, 1 (2022).

    Google Scholar 

  • Perley, D. A., Ho, A. Y. Q., Petitpas, G. & Keating, G. ZTF22aaajecb/AT2022cmc: submillimeter array detection. GCN Circ. 31627, 1 (2022).

    Google Scholar 

  • Planck Collaboration. Planck 2018 results: VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020); erratum 652, C4 (2021).

    Google Scholar 

  • Tanvir, N. R. et al. ZTF22aaajecp/AT2022cmc: VLT/X-shooter redshift. GCN Circ. 31602, 1 (2022).

    Google Scholar 

  • Gal-Yam, A. Observational and physical classification of supernovae. In Handbook of Supernovae (eds. Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).

  • Lu, W. & Bonnerot, C. Self-intersection of the fallback stream in tidal disruption events. Mon. Not. R. Astron. Soc. 492, 686–707 (2020).

    CAS 

    Google Scholar 

  • Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    Google Scholar 

  • Pasham, D. et al. High-cadence NICER X-ray observations of AT2022cmc/ZTF22aaajecpc: flux variability and spectral evolution suggest it could be a relativistic tidal disruption event. Astron. Telegr. 15232, 1 (2022).

    Google Scholar 

  • Yao, Y., Pasham, D. R. & Gendreau, K. C. NuSTAR observation of AT2022cmc, and joint spectral fitting with NICER. Astron. Telegr. 15230, 1 (2022).

    Google Scholar 

  • Tchekhovskoy, A., Metzger, B. D., Giannios, D. & Kelley, L. Z. Swift J1644+57 gone MAD: the case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event. Mon. Not. R. Astron. Soc. 437, 2744–2760 (2014).

    Google Scholar 

  • Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Reports 561, 1–109 (2015).

    Google Scholar 

  • Dai, L., McKinney, J. C., Roth, N., Ramirez-Ruiz, E. & Miller, M. C. A unified model for tidal disruption events. Astrophys. J. Lett. 859, L20 (2018).

    Google Scholar 

  • Bonnerot, C., Lu, W. & Hopkins, P. F. First light from tidal disruption events. Mon. Not. R. Astron. Soc. 504, 4885–4905 (2021).

    CAS 

    Google Scholar 

  • Mattila, S. et al. A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science 361, 482–485 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Stone, N. C. et al. Rates of stellar tidal disruption. Space Sci. Rev. 216, 35 (2020).

    Google Scholar 

  • De Colle, F. & Lu, W. Jets from tidal disruption events. New Astron. Rev. 89, 101538 (2020).

    Google Scholar 

  • Alexander, K. D., van Velzen, S., Horesh, A. & Zauderer, B. A. Radio properties of tidal disruption events. Space Sci. Rev. 216, 81 (2020).

  • Hammerstein, E. et al. The final season reimagined: 30 tidal disruption events from the ZTF-I Survey. Preprint at https://arxiv.org/abs/2203.01461 (2022).

  • Aasi, J. et al. Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015).

    Google Scholar 

  • Acernese, F. et al. Advanced Virgo. Class. Quantum Grav. 32, 024001 (2015).

    Google Scholar 

  • Aartsen, M. et al. The IceCube neutrino observatory: instrumentation and online systems. J. Instrum. 12, P03012–P03012 (2017).

    Google Scholar 

  • Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pacif. 131, 018002 (2019).

    Google Scholar 

  • Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    Google Scholar 

  • Andreoni, I. & Coughlin, M. growth-astro/ztfrest: ztfrest. Zenodo https://doi.org/10.5281/zenodo.6827348 (2022).

  • Yao, Y. et al. ZTF early observations of type Ia supernovae. I. Properties of the 2018 sample. Astrophys. J. 886, 152 (2019).

    CAS 

    Google Scholar 

  • Andreoni, I. ZTF Transient Discovery Report for 2022-02-14. Report No. 2022-397 (Transient Name Server Discovery Report, 2022); https://wis-tns.org/object/2022cmc/discovery-cert

  • Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Prentice, S. J. et al. The Cow: discovery of a luminous, hot, and rapidly evolving transient. Astrophys. J. Lett. 865, L3 (2018).

    Google Scholar 

  • Perley, D. A. et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? Mon. Not. R. Astron. Soc. 484, 1031–1049 (2019).

    CAS 

    Google Scholar 

  • Margutti, R. et al. An embedded X-ray source shines through the aspherical AT2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    CAS 

    Google Scholar 

  • Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020).

    CAS 

    Google Scholar 

  • Ho, A. Y. Q. et al. The Koala: a fast blue optical transient with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).

    CAS 

    Google Scholar 

  • Perley, D. A. et al. Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Mon. Not. R. Astron. Soc. 508, 5138–5147 (2021).

    CAS 

    Google Scholar 

  • Yao, Y. et al. The X-ray and radio loud fast blue optical transient AT2020mrf: implications for an emerging class of engine-driven massive star explosions. Astrophys. J. 934, 104 (2022).

  • Ho, A. Y. Q. et al. AT2018cow: a luminous millimeter transient. Astrophys. J. 871, 73 (2019).

    CAS 

    Google Scholar 

  • Ho, A. Y. Q. et al. Luminous millimeter, radio, and X-ray emission from ZTF 20acigmel (AT 2020xnd). Astrophys. J. 932, 116 (2022).

  • Quataert, E. & Kasen, D. Swift 1644+57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc. 419, L1–L5 (2012).

    Google Scholar 

  • Sheth, K. et al. Millimeter observations of GRB 030329: continued evidence for a two-component jet. Astrophys. J. 595, L33–L36 (2003).

    Google Scholar 

  • Laskar, T. et al. First ALMA light curve constrains refreshed reverse shocks and jet magnetization in GRB 161219B. Astrophys. J. 862, 94 (2018).

    Google Scholar 

  • Laskar, T. et al. A reverse shock in GRB 181201A. Astrophys. J. 884, 121 (2019).

    CAS 

    Google Scholar 

  • Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781, 37 (2014).

    Google Scholar 

  • de Ugarte Postigo, A. et al. Pre-ALMA observations of GRBs in the mm/submm range. Astron. Astrophys. 538, A44 (2012).

    Google Scholar 

  • Kulkarni, S. R. et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998).

    CAS 

    Google Scholar 

  • Perley, D. A., Schulze, S. & de Ugarte Postigo, A. GRB 171205A: ALMA observations. GCN Circ. 22252, 1 (2017).

    Google Scholar 

  • Weiler, K. W. et al. Long-term radio monitoring of SN 1993J. Astrophys. J. 671, 1959–1980 (2007).

    CAS 

    Google Scholar 

  • Maeda, K. et al. The final months of massive star evolution from the circumstellar environment around SN Ic 2020oi. Astrophys. J. 918, 34 (2021).

  • Horesh, A. et al. An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. Mon. Not. R. Astron. Soc. 436, 1258–1267 (2013).

    Google Scholar 

  • Corsi, A. et al. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment. Astrophys. J. 782, 42 (2014).

    Google Scholar 

  • Soderberg, A. M. et al. A relativistic type Ibc supernova without a detected γ-ray burst. Nature 463, 513–515 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Kann, D. A., Klose, S. & Zeh, A. Signatures of extragalactic dust in pre-Swift GRB afterglows. Astrophys. J. 641, 993–1009 (2006).

    CAS 

    Google Scholar 

  • Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. I. Comparing pre-Swift and Swift-era long/soft (type II) GRB optical afterglows. Astrophys. J. 720, 1513–1558 (2010).

    CAS 

    Google Scholar 

  • Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. II. Type I GRB versus type II GRB optical afterglows. Astrophys. J. 734, 96 (2011).

    Google Scholar 

  • Strubbe, L. E. & Quataert, E. Optical flares from the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 400, 2070–2084 (2009).

    Google Scholar 

  • Shiokawa, H., Krolik, J. H., Cheng, R. M., Piran, T. & Noble, S. C. General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015).

    Google Scholar 

  • Hayasaki, K., Stone, N. & Loeb, A. Circularization of tidally disrupted stars around spinning supermassive black holes. Mon. Not. R. Astron. Soc. 461, 3760–3780 (2016).

    Google Scholar 

  • Bonnerot, C., Rossi, E. M., Lodato, G. & Price, D. J. Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes. Mon. Not. R. Astron. Soc. 455, 2253–2266 (2016).

    Google Scholar 

  • Metzger, B. D. & Stone, N. C. A bright year for tidal disruptions. Mon. Not. R. Astron. Soc. 461, 948–966 (2016).

    CAS 

    Google Scholar 

  • Metzger, B. D., Giannios, D. & Mimica, P. Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57. Mon. Not. R. Astron. Soc. 420, 3528–3537 (2012).

    Google Scholar 

  • Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. Astrophys. J. 711, 50–63 (2010).

    Google Scholar 

  • Law-Smith, J. A. P., Coulter, D. A., Guillochon, J., Mockler, B. & Ramirez-Ruiz, E. Stellar tidal disruption events with abundances and realistic structures (STARS): library of fallback rates. Astrophys. J. 905, 141 (2020).

    Google Scholar 

  • Jiang, Y.-F., Stone, J. M. & Davis, S. W. Super-Eddington accretion disks around supermassive black holes. Astrophys. J. 880, 67 (2019).

    CAS 

    Google Scholar 

  • de Ugarte Postigo, A. et al. The distribution of equivalent widths in long GRB afterglow spectra. Astron. Astrophys. 548, A11 (2012).

    Google Scholar 

  • Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the Progenitors. Astron. J. 123, 1111–1148 (2002).

    Google Scholar 

  • Blanchard, P. K., Berger, E. & Fong, W.-F. The offset and host light distributions of long gamma-ray bursts: a new view from HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).

    Google Scholar 

  • Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).

    Google Scholar 

  • Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. Supp. Ser. 254, 22 (2021).

    CAS 

    Google Scholar 

  • Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    Google Scholar 

  • Foreman-Mackey, D., Sick, J. & Johnson, B. python-fsps: Python bindings to FSPS (v0.1.1). Zenodo https://doi.org/10.5281/zenodo.12157 (2014).

  • Byler, N., Dalcanton, J. J., Conroy, C. & Johnson, B. D. Nebular continuum and line emission in stellar population synthesis models. Astrophys. J. 840, 44 (2017).

    Google Scholar 

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).

    Google Scholar 

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Google Scholar 

  • Schulze, S. et al. The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. Astrophys. J. Suppl. Ser. 255, 29 (2021).

    CAS 

    Google Scholar 

  • McConnell, N. J. & Ma, C.-P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013).

    Google Scholar 

  • Kesden, M. Tidal-disruption rate of stars by spinning supermassive black holes. Phys. Rev. D 85, 024037 (2012).

    Google Scholar 

  • Cummings, J. R. et al. GRB 110328A: Swift detection of a burst. GCN Circ. 11823, 1 (2011).

    Google Scholar 

  • Benson, B. A. et al. SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope. In Proc. SPIE 9153: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII (eds Holland, W. S. & Zmuidzinas, J.) 91531P (SPIE, 2014).

  • Abazajian, K. et al. CMB-S4 science case, reference design, and project plan. Preprint at https://arxiv.org/abs/1907.04473 (2019).

  • Guns, S. et al. Detection of galactic and extragalactic millimeter-wavelength transient sources with SPT-3G. Astrophys. J. 916, 98 (2021).

    Google Scholar 

  • Eftekhari, T. et al. Extragalactic millimeter transients in the era of next-generation CMB surveys. Astrophys. J. 935, 16 (2022).

  • Feindt, U. et al. simsurvey: estimating transient discovery rates for the Zwicky Transient Facility. J. Cosmol. Astropart. Phys. 2019, 005 (2019).

    MathSciNet 
    CAS 

    Google Scholar 

  • Andreoni, I. et al. Constraining the kilonova rate with Zwicky Transient Facility searches independent of gravitational wave and short gamma-ray burst triggers. Astrophys. J. 904, 155 (2020).

    CAS 

    Google Scholar 

  • Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Google Scholar 

  • Feroz, F., Hobson, M. P. & Bridges, M. Multinest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Google Scholar 

  • Feroz, F. & Hobson, M. P. Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis. Mon. Not. Roy. Astron. Soc. 384, 449 (2008).

    Google Scholar 

  • Bellm, E. C. et al. The Zwicky Transient Facility: surveys and scheduler. Publ. Astron. Soc. Pacif. 131, 068003 (2019).

    Google Scholar 

  • Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pacif. 132, 038001 (2020).

    Google Scholar 

  • Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pacif. 131, 018003 (2019).

    Google Scholar 

  • Steele, I. A. et al. The Liverpool Telescope: performance and first results. In Proc. SPIE 5489: Ground-based Telescopes (ed. Oschmann, J. M. Jr.) 679-692 (SPIE, 2004).

  • Perley, R. A., Chandler, C. J., Butler, B. J. & Wrobel, J. M. The Expanded Very Large Array: a new telescope for new science. Astrophys. J. Lett. 739, L1 (2011).

    Google Scholar 

  • Holland, W. S. et al. SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 430, 2513–2533 (2013).

    Google Scholar 

  • Currie, M. J. et al. Starlink Software in 2013. In Astronomical Data Analysis Software and Systems XXIII (eds Manset, N. & Forshay, P.) 391–394 (Astronomical Society of the Pacific, 2014).

  • Chapin, E. L. et al. SCUBA-2: iterative map-making with the Sub-Millimetre User Reduction Facility. Mon. Not. R. Astron. Soc. 430, 2545–2573 (2013).

    Google Scholar 

  • Mairs, S. et al. A decade of SCUBA-2: a comprehensive guide to calibrating 450 μm and 850 μm continuum data at the JCMT. Astron. J. 162, 191 (2021).

    Google Scholar 

  • Smith, I. A., Perley, D. A. & Tanvir, N. R. ZTF22aaajecp/AT2022cmc: JCMT SCUBA-2 sub-mm observations. GCN Circ. 31654 (2022).

    Google Scholar 

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A. et al.) 127 (Astronomical Society of the Pacific, 2007).

  • Maity, B. & Chandra, P. 1000 days of the lowest-frequency emission from the low-luminosity GRB 171205A. Astrophys. J. 907, 60 (2021).

    CAS 

    Google Scholar 

  • McCully, C. & Tewes, M. Astro-SCRAPPY: Speedy Cosmic Ray Annihilation Package in Python. Github https://github.com/astropy/astroscrappy (2019).

  • Bertin, E. SWarp: resampling and co-adding FITS images together. Astrophys. Source Code Library http://ascl.net/1010.068 (2010).

  • Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  • Flaugher, B. et al. The Dark Energy Camera. Astron. J. 150, 150 (2015).

    Google Scholar 

  • Valdes, F., Gruendl, R. & DES Project. The DECam Community Pipeline. In Astronomical Data Analysis Software and Systems XXIII (eds Manset, N. & Forshay, P.) 379–382 (Astronomical Society of the Pacific, 2014).

  • Rest, A. et al. Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 Survey. Astrophys. J. 795, 44 (2014).

    Google Scholar 

  • Xavier Prochaska, J. et al. pypeit/Pypeit: release 1.0.0. Zenodo https://zenodo.org/record/3743493 (2020).

  • Cenko, S. B. et al. The Automated Palomar 60 Inch Telescope. Publ. Astron. Soc. Pacif. 118, 1396–1406 (2006).

    Google Scholar 

  • Blagorodnova, N. et al. The SED Machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pacif. 130, 035003 (2018).

    Google Scholar 

  • Rigault, M. et al. Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astron. Astrophys. 627, A115 (2019).

    CAS 

    Google Scholar 

  • Fremling, C. et al. PTF12os and iPTF13bvn. Astron. Astrophys. 593, A68 (2016).

    Google Scholar 

  • Ahn, C. P. et al. The Tenth Data Release of the Sloan Digital Sky Survey: first spectroscopic data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. Suppl. Ser. 211, 17 (2014).

    Google Scholar 

  • Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pacif. 130, 064505 (2018).

    Google Scholar 

  • Smith, K. W. et al. Design and operation of the ATLAS transient science server. Publ. Astron. Soc. Pacif. 132, 085002 (2020).

    Google Scholar 

  • Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Google Scholar 

  • Modigliani, A. et al. The X-shooter pipeline. In Proc. SPIE 7737: Observatory Operations: Strategies, Processes, and Systems III (eds Silva, D. R. et al.) 773728 (SPIE, 2010).

  • Selsing, J. et al. The X-shooter GRB afterglow legacy sample (XS-GRB). Astron. Astrophys. 623, A92 (2019).

    CAS 

    Google Scholar 

  • Garzón, F. et al. EMIR: the GTC NIR multi-object imager-spectrograph. In Proc. SPIE 6269: Ground-based and Airborne Instrumentation for Astronomy (eds McLean, I. S. & Iye, M.) 626918 (SPIE, 2006).

  • Kann, D. A. et al. ZTF22aaajecp/AT 2022cmc: CAHA 2.2m/CAFOS detection, luminous transient. GCN Circ. 31626, 1 (2022).

    Google Scholar 

  • Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Google Scholar 

  • Lundquist, M. J., Alvarez, C. A. & O’Meara, J. ZTF22aaajecp/AT2022cmc: Keck DEIMOS redshift. GCN Circ. 31612, 1 (2022).

    Google Scholar 

  • Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pacif. 131, 084503 (2019).

    Google Scholar 

  • Labrie, K., Cardenes, R., Anderson, K., Simpson, C. & Turner, J. E. H. DRAGONS: one pipeline to rule them all. In Proc. SPIE 522: Astronomical Data Analysis Software and Systems XXVII (eds Ballester, P. et al.) 583–586 (SPIE, 2020).

  • Ahumada, T. et al. ZTF22aaajecp/AT2022cmc: GMOS-N spectroscopy. GCN Circ. 31595, 1 (2022).

    Google Scholar 

  • Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    Google Scholar 

  • Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

    Google Scholar 

  • Gendreau, K. C. et al. The Neutron Star Interior Composition Explorer (NICER): design and development. In Proc. SPIE 9905: Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray (eds den Herder, J.-W. A. et al.) 99051H (SPIE, 2016).

  • Pasham, D. R. et al. The birth of a relativistic jet following the disruption of a star by a cosmological black hole. Nat. Astron. https://doi.org/10.1038/s41550-022-01820-x (2022).

  • Remillard, R. A. et al. An empirical background model for the NICER X-Ray Timing Instrument. Astron. J. 163, 130 (2022).

    CAS 

    Google Scholar 

  • HI4PI Collaboration. HI4PI: a full-sky H i survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

    Google Scholar 

  • Wiersema, K. et al. Polarimetry of the transient relativistic jet of GRB 110328/Swift J164449.3+573451. Mon. Not. R. Astron. Soc. 421, 1942–1948 (2012).

    Google Scholar 

  • Planck Collaboration. Planck 2013 results. XI. All-sky model of thermal dust emission. Astron. Astrophys. 571, A11 (2014).

    Google Scholar 

  • Eftekhari, T., Berger, E., Zauderer, B. A., Margutti, R. & Alexander, K. D. Radio monitoring of the tidal disruption event Swift J164449.3+573451. III. Late-time jet energetics and a deviation from equipartition. Astrophys. J. 854, 86 (2018).

    Google Scholar 

  • Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic classification and the redshift completeness of local galaxy catalogs. Astrophys. J. 895, 32 (2020).

    CAS 

    Google Scholar 

  • Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical sample for exploring supernova demographics. Astrophys. J. 904, 35 (2020).

    CAS 

    Google Scholar 

  • Ho, A. Y. Q. et al. The photometric and spectroscopic evolution of rapidly evolving extragalactic transients in ZTF. Preprint at https://arxiv.org/abs/2105.08811 (2021).

  • Ho, A. Y. Q. et al. Cosmological fast optical transients with the Zwicky Transient Facility: a search for dirty fireballs. Astrophys. J. 938, 85 (2022).

  • Cenko, S. B. et al. iPTF14yb: the first discovery of a gamma-ray burst afterglow independent of a high-energy trigger. Astrophys. J. Lett. 803, L24 (2015).

    Google Scholar 

  • Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).

    Google Scholar 

  • Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Villar, V. A., Berger, E., Metzger, B. D. & Guillochon, J. Theoretical models of optical transients. I. A broad exploration of the duration–luminosity phase space. Astrophys. J. 849, 70 (2017).

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *