Strange India All Strange Things About India and world


  • 1.

    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    ADS 

    Google Scholar 

  • 2.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Keenan, T. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Baig, S., Medlyn, B. E., Mercado, L. M. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).

    ADS 

    Google Scholar 

  • 5.

    Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long‐term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344, 508 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    ADS 

    Google Scholar 

  • 9.

    Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6, 751–758 (2016).

    ADS 

    Google Scholar 

  • 12.

    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 9, 684–689 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Reich, P. B., Hungate, B. A. & Luo, Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu. Rev. Ecol. Evol. Syst. 37, 611–636 (2006).

    Google Scholar 

  • 14.

    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. 42, 181–203 (2011).

    Google Scholar 

  • 15.

    Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507–522 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

    Google Scholar 

  • 17.

    Hungate, B. A. et al. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta‐analyses. Glob. Change Biol. 15, 2020–2034 (2009).

    ADS 

    Google Scholar 

  • 18.

    Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).

    CAS 

    Google Scholar 

  • 19.

    Tian, H. et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Glob. Biogeochem. Cycles 29, 775–792 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).

    ADS 

    Google Scholar 

  • 21.

    Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: a meta‐analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).

    Google Scholar 

  • 22.

    Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).

    CAS 

    Google Scholar 

  • 23.

    Treseder, K. K. A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).

    Google Scholar 

  • 24.

    Jastrow, J. D. et al. Elevated atmospheric carbon dioxide increases soil carbon. Glob. Change Biol. 11, 2057–2064 (2005).

    ADS 

    Google Scholar 

  • 25.

    Carrillo, Y., Dijkstra, F. A., LeCain, D. & Pendall, E. Mediation of soil C decomposition by arbuscular mycorrizhal fungi in grass rhizospheres under elevated CO2. Biogeochemistry 127, 45–55 (2016).

    CAS 

    Google Scholar 

  • 26.

    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).

    CAS 

    Google Scholar 

  • 27.

    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).

    ADS 

    Google Scholar 

  • 28.

    Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Craig, M. E. et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Change Biol. 24, 3317–3330 (2018).

    ADS 

    Google Scholar 

  • 30.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Google Scholar 

  • 32.

    Sokol, N. W., Kuebbing, S. E., Karlsen‐Ayala, E. & Bradford, M. A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol. 221, 233–246 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Evans, R. D. et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nat. Clim. Chang. 4, 394–397 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Walker, A. P. et al. FACE-MDS Phase 2: Model Output https://www.osti.gov/dataexplorer/biblio/dataset/1480327 (2018).

  • 35.

    Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2018).

    ADS 

    Google Scholar 

  • 36.

    Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).

    ADS 

    Google Scholar 

  • 38.

    Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 3, 909–912 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Terrer, C. Report of Mutualistic Associations, Nutrients, and Carbon Under eCO2(ROMANCE) v1.0 Dataset. https://doi.org/10.6084/m9.figshare.11704491.v7 (2020).

  • 42.

    Dieleman, W. I. J. et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Change Biol. 18, 2681–2693 (2012).

    ADS 

    Google Scholar 

  • 43.

    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta‐Analysis 225–238 (John Wiley & Sons, 2009).

  • 44.

    Del Re, A. C. & Hoyt, W. T. MAd: meta-analysis with mean differences. R Package Version 08-2 https://cran.r-project.org/package=MAd (2014).

  • 45.

    Song, J. & Wan, S. A Global Database Of Plant Production And Carbon Exchange From Global Change Manipulative Experiments https://doi.org/10.6084/m9.figshare.7442915.v9 (2020).

  • 46.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, https://doi.org/10.18637/jss.v036.i03 (2010).

  • 47.

    Osenberg, C. W., Sarnelle, O., Cooper, S. D. & Holt, R. D. Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80, 1105–1117 (1999).

    Google Scholar 

  • 48.

    Rubin, D. B. & Schenker, N. Multiple imputation in health‐are databases: an overview and some applications. Stat. Med. 10, 585–598 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Lajeunesse, M. J. Facilitating systematic reviews, data extraction and meta‐analysis with the METAGEAR package for R. Methods Ecol. Evol. 7, 323–330 (2016).

    Google Scholar 

  • 50.

    Van Lissa, C. J. MetaForest: exploring heterogeneity in meta-analysis using random forests. Preprint at https://psyarxiv.com/myg6s/ (2017).

  • 51.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, https://doi.org/10.18637/jss.v028.i05 (2008).

  • 52.

    Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, https://doi.org/10.18637/jss.v034.i12 (2010).

  • 53.

    van Groenigen, K. J. et al. Element interactions limit soil carbon storage. Proc. Natl Acad. Sci. USA 103, 6571–6574 (2006).

    ADS 

    Google Scholar 

  • 54.

    Wang, B. & Qiu, Y. L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363 (2006).

    CAS 

    Google Scholar 

  • 55.

    Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188, E113–E125 (2016).

    Google Scholar 

  • 56.

    Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 57.

    Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Chang. 5, 528–534 (2015).

    ADS 

    Google Scholar 

  • 58.

    Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free‐Air CO2 Enrichment studies. New Phytol. 202, 803–822 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    De Kauwe, M. G. et al. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 203, 883–899 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Walker, A. P. et al. Comprehensive ecosystem model‐data synthesis using multiple data sets at two temperate forest free‐air CO2 enrichment experiments: model performance at ambient CO2 concentration. J. Geophys. Res. Biogeosci. 119, 937–964 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 61.

    Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Schlesinger, W. et al. in Managed Ecosystems and CO2 197–212 (2006).

  • 63.

    Hungate, B. A. et al. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland. New Phytol. 200, 753–766 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Jordan, D. N. et al. Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Glob. Change Biol. 5, 659–668 (1999).

    ADS 

    Google Scholar 

  • 65.

    Carrillo, Y., Dijkstra, F., LeCain, D., Blumenthal, D. & Pendall, E. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecol. Lett. 21, 1639–1648 (2018).

    Google Scholar 

  • 66.

    Mueller, K. E. et al. Impacts of warming and elevated CO2 on a semi‐arid grassland are non‐additive, shift with precipitation, and reverse over time. Ecol. Lett. 19, 956–966 (2016).

    CAS 

    Google Scholar 

  • 67.

    Zak, D. R., Pregitzer, K. S., Kubiske, M. E. & Burton, A. J. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade‐long net primary productivity enhancement by CO2. Ecol. Lett. 14, 1220–1226 (2011).

    Google Scholar 

  • 68.

    Oleson, K. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M (2013).

  • 69.

    Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).

    ADS 

    Google Scholar 

  • 70.

    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, https://doi.org/10.1029/2003GB002199 (2005).

  • 71.

    Haverd, V. et al. A new version of the CABLE land surface model (subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 72.

    Lawrence, D. M. et al. The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    ADS 

    Google Scholar 

  • 73.

    Meiyappan, P., Jain, A. K. & House, J. I. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 29, 1524–1548 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 74.

    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    ADS 

    Google Scholar 

  • 75.

    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 76.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    ADS 

    Google Scholar 

  • 77.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high‐resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • 78.

    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Batjes, N. H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 81.

    Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).

    ADS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.