Strange India All Strange Things About India and world


  • Banacloche, S., Gamarra, A. R., Lechon, Y. & Bustreo, C. Socioeconomic and environmental impacts of bringing the sun to earth: a sustainability analysis of a fusion power plant deployment. Energy 209, 118460 (2020).

    CAS 
    Article 

    Google Scholar 

  • Wesson, J. Tokamaks 4th edn, Ch. 1, 2–27 (Oxford Univ. Press, 2011).

  • Wesson, J. Tokamaks 4th edn, Ch. 13, 764–767 (Oxford Univ. Press, 2011).

  • Lee, G. S. et al. Design and construction of the KSTAR tokamak. Nucl. Fusion 41, 1515 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wagner, F. et al. Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX Tokamak. Phys. Rev. Lett. 49, 1408–1412 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shimada, M. et al. Progress in the ITER physics basis – Chapter 1: Overview and summary. Nucl. Fusion 47, S1–S17 (2007).

    CAS 
    Article 

    Google Scholar 

  • Barbarino, M. A brief history of nuclear fusion. Nat. Phys. 16, 890–893 (2020).

    CAS 
    Article 

    Google Scholar 

  • Yoon, S. W. et al. Characteristics of the first H-mode discharges in KSTAR. Nucl. Fusion 51, 113009 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Li, J. et al. A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak. Nat. Phys. 9, 817–821 (2013).

    CAS 
    Article 

    Google Scholar 

  • Na, Y. S. et al. On hybrid scenarios in KSTAR. Nucl. Fusion 60, 086006 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Luce, T. C. et al. Development of advanced inductive scenarios for ITER. Nucl. Fusion 54, 013015 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lao, L. L. et al. High internal inductance improved confinement H-mode discharges obtained with an elongation ramp technique in the DIII-D tokamak. Phys. Rev. Lett. 70, 3435 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zohm, H. Edge localized modes (ELMs). Plasma Phys. Control. Fusion 38, 105–128 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lang, P. T. et al. ELM frequency control by continuous small pellet injection in ASDEX Upgrade. Nucl. Fusion 43, 1110–1120 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Degeling, A. W. et al. Magnetic triggering of ELMs in TCV. Plasma Phys. Control. Fusion 45, 1637–1655 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Evans, T. E. et al. Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas. Nat. Phys. 2, 419–423 (2006).

    CAS 
    Article 

    Google Scholar 

  • Jeon, Y. M. et al. Suppression of edge localized modes in high-confinement KSTAR plasmas by nonaxisymmetric magnetic perturbations. Phys. Rev. Lett. 109, 035004 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Park, J.-K. et al. 3D field phase-space control in tokamak plasmas. Nat. Phys. 14, 1223–1228 (2018).

    CAS 
    Article 

    Google Scholar 

  • Burrell, K. H. Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. Phys. Plasmas 4, 1499 (1997).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Hahm, T. S. Physics behind transport barrier theory and simulations. Plasma Phys. Control. Fusion 44, A87–A101 (2002).

  • Conway, G. D. et al. Suppression of plasma turbulence during optimized shear configurations in JET. Phys. Rev. Lett. 84, 1463 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Koide, Y. et al. Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high-βp discharges. Phys. Rev. Lett. 72, 3662 (1994).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Strachan, J. D. et al. High-temperature plasmas in the Tokamak Fusion Test Reactor. Phys. Rev. Lett. 58, 1004 (1987).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gormezano, C. et al. Internal transport barriers in JET deuterium-tritium plasmas. Phys. Rev. Lett. 80, 5544 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gruber, O. et al. Steady state H mode and Te~Ti operation with internal transport barriers in ASDEX Upgrade. Nucl. Fusion 40, 1145 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yu, D. L. et al. Ion internal transport barrier in neutral beam heated plasmas on HL-2A. Nucl. Fusion 56, 056003 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Koide, Y. et al. Characteristic peaked profiles of ion temperature and toroidal rotation velocity in JT-60 hot ion modes. Nucl. Fusion 33, 251 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chung, J. et al. Formation of the internal transport barrier in KSTAR. Nucl. Fusion 58, 016019 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Chung, J. et al. Sustainable internal transport barrier discharge at KSTAR. Nucl. Fusion 61, 126051 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Garofalo, A. M. et al. Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D. Nucl. Fusion 55, 123025 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Doyle, E. J. et al. The quiescent double barrier regime in the DIII-D tokamak. Plasma Phys. Control. Fusion 43, A95 (2001).

    CAS 
    Article 

    Google Scholar 

  • Yushmanov, P. N. et al. Scalings for tokamak energy confinement. Nucl. Fusion 30, 1999 (1990).

    CAS 
    Article 

    Google Scholar 

  • ITER Physics Expert Group on Confinement and Transport et al. Chapter 2: Plasma confinement and transport. Nucl. Fusion 39, 2175 (1999).

    ADS 
    Article 

    Google Scholar 

  • Crisanti, F. et al. JET quasistationary internal-transport-barrier operation with active control of the pressure profile. Phys. Rev. Lett. 88, 145004 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Manickam, J., Pomphrey, N. & Todd, A. M. M. Ideal MHD stability properties of pressure driven modes in low shear tokamaks. Nucl. Fusion 27, 1461 (1987).

    CAS 
    Article 

    Google Scholar 

  • Chu, M. S. et al. Resistive interchange modes in negative central shear tokamaks with peaked pressure profiles. Phys. Rev. Lett. 77, 2710 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Okabayashi, M. et al. Mode structure of disruption precursors in TFTR enhanced reversed shear discharges. Nucl. Fusion 38, 1149 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • de Vries, P. C. et al. Survey of disruption causes at JET. Nucl. Fusion 51, 053018 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • ITER Research Plan within the Staged Approach ITER Technical Report ITR-18-003 (ITER, 2018).

  • Strait, E. J. Stability of high beta tokamak plasmas. Phys. Plasmas 1, 1415 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chapman, I. T., Kemp, R. & Ward, D. J. Analysis of high β regimes for DEMO. Fusion Eng. Des. 86, 141–150 (2011).

    CAS 
    Article 

    Google Scholar 

  • Kim, H.-S. et al. Characteristics of global energy confinement in KSTAR L- and H-mode plasmas. Nucl. Fusion 54, 083012 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Citrin, J. et al. Non-linear stabilization of tokamak microturbulence by fast ions. Phys. Rev. Lett. 111, 155001 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Romanelli, M. et al. Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation. Plasma Phys. Control. Fusion 52, 045007 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Garcia, J. et al. Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nucl. Fusion 55, 053007 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Di Siena, A. et al. New high-confinement regime with fast ions in the core of fusion plasmas. Phys. Rev. Lett. 127, 025002 (2021).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Connor, J. W. et al. A review of internal transport barrier physics for steady-state operation of tokamaks. Nucl. Fusion 44, R1–R49 (2004).

    CAS 
    Article 

    Google Scholar 

  • Peeters, A. G. et al. The non-linear gyro-kinetic flux tube code GKW. Comput. Phys. Commun. 180, 2650 (2009).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar 

  • Bourdelle, C. et al. Impact of the α parameter on the microstability of internal transport barriers. Nucl. Fusion 45, 110 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Candy, J., Belli, E. A. & Bravenec, R. V. A high-accuracy Eulerian gyrokinetic solver for collisional plasmas. J. Comput. Phys. 324, 73–93 (2016).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • In, Y. et al. Extremely low intrinsic non-axisymmetric field in KSTAR and its implications. Nucl. Fusion 55, 043004 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Kim, K. et al. Status of the KSTAR superconducting magnet system development. Nucl. Fusion 45, 783 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lee, H. J. et al. Design and fabrication of the KSTAR in-vessel cryo-pump. Fusion Eng. Des. 86, 1993–1996 (2011).

    CAS 
    Article 

    Google Scholar 

  • Joung, M. et al. Design of ECH launcher for KSTAR advanced Tokamak operation. Fusion Eng. Des. 151, 111395 (2020).

  • Kwak, J.-G. et al. KSTAR status and upgrade plan toward fusion reactor. IEEE Trans. Plasma Sci. 48, 1388–1395 (2020).

    ADS 
    Article 

    Google Scholar 

  • Lee, S. G. et al. Magnetic diagnostics for the first plasma operation in Korea Superconducting Tokamak Advanced Research. Rev. Sci. Instrum. 79, 10F117 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lao, L. L. et al. Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25, 1611 (1985).

    CAS 
    Article 

    Google Scholar 

  • Bak, J. G. et al. Initial measurements by using Mirnov coils in the KSTAR machine. in Proc. of the 37th EPS conference on Plasma Physics (Ed. C. McKenna) (European Physical Society, 2010).

  • Lee, J. H. et al. Edge profile measurements using Thomson scattering on the KSTAR tokamak. Rev. Sci. Instrum. 85, 11D407 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ko, W. H. et al. Rotation characteristics during the resonant magnetic perturbation induced edge localized mode suppression on the KSTAR. Rev. Sci. Instrum. 85, 11E413 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Juhn, J.-W. et al. Multi-chord IR–visible two-color interferometer on KSTAR. Rev. Sci. Instrum. 92, 043559 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chung, J., Ko, J., De Bock, M. F. M. & Jaspers, R. J. E. Instrumentation for a multichord motional Stark effect diagnostic in KSTAR. Rev. Sci. Instrum. 85, 11D827 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • England, A. C. et al. Neutron emission from KSTAR ohmically heated plasmas. Phys. Lett. A 375, 3095–3099 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ahn, J.-W. et al. Confinement and ELM characteristics of H-mode plasmas in KSTAR. Nucl. Fusion 52, 114001 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Carlstrom, T. N. L-H transition and power threshold studies in the DIII-D tokamak. Fusion Sci. Technol. 48, 997–1010 (2005).

    CAS 
    Article 

    Google Scholar 

  • Jeong, S. H. et al. First neutral beam injection experiments on KSTAR tokamak. Rev. Sci. Instrum. 83, 02B102 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, S. J. et al. Recent experimental results of KSTAR RF heating and current drive. AIP Conf. Proc. 1689, 030014 (2015).

    Article 

    Google Scholar 

  • Sips, A. C. C. et al. Advanced scenarios for ITER operation. Plasma Phys. Control. Fusion 47, A19 (2005).

    CAS 
    Article 

    Google Scholar 

  • Lee, C. Y. et al. Development of integrated suite of codes and its validation on KSTAR. Nucl. Fusion61, 96020 (2021).

  • Pankin, A. et al. The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library. Phys. Commun. 159, 157 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Houlberg, W. A., Shaing, K. C., Hirshman, S. P. & Zarnstorff, M. C. Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio. Phys. Plasmas 4, 3230 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pereverzev, G. & Yushmanov, P. N. ASTRA Automated System for TRansport Analysis in a Tokamak (IPP, 2002); https://pure.mpg.de/rest/items/item_2138238/component/file_2138237/content

  • Sarwar, S., Na, H. K. & Park, J. M. Effective ion charge (Zeff) measurements and impurity behaviour in KSTAR. Rev. Sci. Instrum. 89, 043504 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Angioni, C. & Peeters, A. G. Gyrokinetic calculations of diffusive and convective transport of α particles with a slowing-down distribution function. Phys. Plasmas 15, 052307 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Lutjens, H., Bondeson, A. & Sauter, O. The CHEASE code for toroidal MHD equilibria. Comput. Phys. Commun. 97, 219 (1996).

    ADS 
    MATH 
    Article 

    Google Scholar 

  • Miller, R. L. et al. Noncircular, finite aspect ratio, local equilibrium model. Phys. Plasmas 5, 973 (1998).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Sugama, H., Watanabe, T.-H. & Nunami, M. Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations. Phys. Plasmas 16, 112503 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Hahm, T. S. & Tang, W. M. Properties of ion temperature gradient drift instabilities in H-mode plasmas. Phys. Plasmas 1, 1185 (1989).

    CAS 

    Google Scholar 

  • Guo, S. C. & Romanelli, F. The linear threshold of the ion‐temperature‐gradient‐driven mode. Phys. Plasmas 5, 520 (1993).

    CAS 

    Google Scholar 

  • Connor, J. W. & Wilson, H. R. Survey of theories of anomalous transport. Plasma Phys. Control. Fusion 36, 719 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Diamond, P. H. et al. On the dynamics of transition to enhanced confinement of reversed magnetic shear discharges. Phys. Rev. Lett. 78, 1472–1475 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yoo, M. G. et al. Evidence of a turbulent ExB mixing avalanche mechanism of gas breakdown in strongly magnetized systems. Nat. Commun. 9, 3523 (2018).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • McDermott, R. M. et al. Edge radial electric field structure and its connections to H-mode confinement in Alcator C-Mod plasmas. Phys. Plasmas 16, 056103 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Liu, Z. X. et al. The physics mechanisms of the weakly coherent mode in the Alcator C-Mod Tokamak. Phys. Plasmas 23, 120703 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Levinton, F. M. et al. Improved confinement with reversed magnetic shear in TFTR. Phys. Rev. Lett. 75, 4417 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Strait, E. J. et al. Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. Phys. Rev. Lett. 75, 4421 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fujita, T. et al. Plasma equilibrium and confinement in a tokamak with nearly zero central current density in JT-60U. Phys. Rev. Lett. 87, 245001 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published.