Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).
Google Scholar
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Google Scholar
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Google Scholar
Lu, L., Joannopoulos, J. D. & Soljacić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Google Scholar
Zhang, X., Xiao, M., Cheng, Y., Lu, M.-H. & Christensen, J. Topological sound. Commun. Phys. 1, 97 (2018).
Xie, B.-Y. et al. Photonics meets topology. Opt. Express 26, 24531–24550 (2018).
Google Scholar
Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Google Scholar
Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).
Google Scholar
Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
Google Scholar
Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
Google Scholar
Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).
Google Scholar
Ni, X. et al. Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow. New J. Phys. 17, 053016 (2015).
Google Scholar
Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).
Google Scholar
Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alu, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).
Google Scholar
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Google Scholar
Yang, Z., Lustig, E., Lumer, Y. & Segev, M. Photonic Floquet topological insulators in a fractal lattice. Light. Sci. Appl. 9, 128 (2020).
Google Scholar
Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).
Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).
Google Scholar
Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013).
Google Scholar
Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).
Google Scholar
Kremer, M. et al. A square-root topological insulator with non-quantized indices realized with photonic Aharonov–Bohm cages. Nat Commun. 11, 907 (2020).
Google Scholar
Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).
Google Scholar
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Google Scholar
Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
Google Scholar
Mousavi, S. H., Khanikaev, A. B. & Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6, 8682 (2015).
Google Scholar
Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).
Google Scholar
Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).
Google Scholar
Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).
Google Scholar
He, C. et al. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl Acad. Sci. USA 113, 4924–4928 (2016).
Google Scholar
He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).
Google Scholar
Maczewsky, L. J. et al. Fermionic time-reversal symmetry in a photonic topological insulator. Nat. Mater. 19, 855–860 (2020).
Google Scholar
Lu, J., Qiu, C., Ke, M. & Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 116, 093901 (2016).
Google Scholar
Dong, J.-W., Chen, X.-D., Zhu, H., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).
Google Scholar
Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).
Google Scholar
Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).
Google Scholar
Xie, B. et al. Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021).
Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).
Google Scholar
Ezawa, M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).
Google Scholar
Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).
Google Scholar
Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018).
Google Scholar
Xie, B. et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett. 122, 233903 (2019).
Google Scholar
Chen, X.-D. et al. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122, 233902 (2019).
Google Scholar
Xue, H., Yang, Y., Gao, F., Chong, Y. & Zhang, B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 18, 108–112 (2019).
Google Scholar
Ni, X., Weiner, M., Alu, A. & Khanikaev, A. B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019).
Google Scholar
Zhang, X. et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019).
Google Scholar
Zhang, Z. et al. Deep-subwavelength holey acoustic second-order topological insulators. Adv. Mater. 31, 1904682 (2019).
Google Scholar
Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018).
Google Scholar
Lee, C. H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).
Bao, J. et al. Topoelectrical circuit octupole insulator with topologically protected corner states. Phys. Rev. B 100, 201406 (2019).
Google Scholar
Song, L., Yang, H., Cao, Y. & Yan, P. Realization of the square-root higher-order topological insulator in electric circuits. Nano Lett. 20, 7566–7571 (2020).
Google Scholar
Chiu, C.-K., Teo, J. C., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).
Google Scholar
Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).
Google Scholar
Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).
Google Scholar
Li, F., Huang, X., Lu, J., Ma, J. & Liu, Z. Weyl points and fermi arcs in a chiral phononic crystal. Nat. Phys. 14, 30–34 (2018).
Google Scholar
Cai, X. et al. Symmetry-enforced three-dimensional Dirac phononic crystals. Light. Sci. Appl. 9, 38 (2020).
Google Scholar
He, H. et al. Observation of quadratic Weyl points and double-helicoid arcs. Nat. Commun. 11, 1820 (2020).
Google Scholar
Gao, W. et al. Experimental observation of photonic nodal line degeneracies in metacrystals. Nat. Commun. 9, 950 (2018).
Google Scholar
Qiu, H. et al. Straight nodal lines and waterslide surface states observed in acoustic metacrystals. Phys. Rev. B 100, 041303 (2019).
Google Scholar
Deng, W. et al. Nodal rings and drumhead surface states in phononic crystals. Nat. Commun. 10, 1769 (2019).
Google Scholar
Yang, Y. et al. Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal. Nat. Commun. 10, 5185 (2019).
Google Scholar
Xiao, M. et al. Experimental demonstration of acoustic semimetal with topologically charged nodal surface. Sci. Adv. 6, eaav2360 (2020).
Google Scholar
Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019). Theoretical framework for non-Hermitian topological phases.
Google Scholar
Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).
Google Scholar
Su, W., Schrieffer, J. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
Google Scholar
Schomerus, H. Topologically protected midgap states in complex photonic lattices. Opt. Lett. 38, 1912–1914 (2013).
Google Scholar
Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).
Google Scholar
Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).
Google Scholar
Zhang, Z., López, M. R., Cheng, Y., Liu, X. & Christensen, J. Non-Hermitian sonic second-order topological insulator. Phys. Rev. Lett. 122, 195501 (2019).
Google Scholar
Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 (2015).
Google Scholar
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
Google Scholar
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).
Google Scholar
Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120, 113901 (2018).
Google Scholar
Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).
Google Scholar
Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).
Google Scholar
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Google Scholar
Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373, 1514–1517 (2021).
Google Scholar
Liu, Y. G., Jung, P. S., Parto, M., Christodoulides, D. N. & Khajavikhan, M. Gain-induced topological response via tailored long-range interactions. Nat. Phys. 17, 704–709 (2021).
Google Scholar
Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).
Google Scholar
Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884–888 (2022).
Google Scholar
Hu, B. et al. Non-Hermitian topological whispering gallery. Nature 597, 655–659 (2021).
Google Scholar
Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).
Google Scholar
Wojcik, C. C., Sun, X.-Q., Bzdušek, T. & Fan, S. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B 101, 205417 (2020).
Google Scholar
Hu, H. & Zhao, E. Knots and non-Hermitian bloch bands. Phys. Rev. Lett. 126, 010401 (2021).
Google Scholar
Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).
Google Scholar
Kawabata, K., Bessho, T. & Sato, M. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett. 123, 066405 (2019).
Google Scholar
Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).
Google Scholar
Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. A review on non-Hermitian skin effect. Adv. Phys. X 7, 2109431 (2022).
Zhang, K., Yang, Z. & Fang, C. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 13, 2496 (2022).
Google Scholar
Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020). Experimental demonstration of the non-Hermitian skin effect.
Google Scholar
Gao, P., Willatzen, M. & Christensen, J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys. Rev. Lett. 125, 206402 (2020).
Google Scholar
Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).
Google Scholar
Li, Z. & Mong, R. S. Homotopical characterization of non-Hermitian band structures. Phys. Rev. B 103, 155129 (2021).
Google Scholar
Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018). Topological band theory for non-Hermitian systems.
Google Scholar
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).
Google Scholar
Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).
Google Scholar
Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
Google Scholar
Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).
Google Scholar
Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).
Google Scholar
Yang, Z. & Hu, J. Non-Hermitian Hopf-link exceptional line semimetals. Phys. Rev. B 99, 081102 (2019).
Google Scholar
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).
Google Scholar
Cui, X., Zhang, R.-Y., Chen, W.-J., Zhang, Z.-Q. & Chan, C. T. Symmetry-protected topological exceptional chains in non-Hermitian crystals. Preprint at https://arxiv.org/abs/2204.08052 (2022).
Ghorashi, S. A. A., Li, T., Sato, M. & Hughes, T. L. Non-Hermitian higher-order Dirac semimetals. Phys. Rev. B 104, L161116 (2021).
Google Scholar
Yang, X., Cao, Y. & Zhai, Y. Non-Hermitian Weyl semimetals: non-Hermitian skin effect and non-Bloch bulk–boundary correspondence. Chin. Phys. B 31, 010308 (2022).
Google Scholar
Weidemann, S., Kremer, M., Longhi, S. & Szameit, A. Topological triple phase transition in non-Hermitian Floquet quasicrystals. Nature 601, 354–359 (2022).
Google Scholar
Oppenheim, A. V. et al. Signals & Systems (Pearson Educación, 1997).
Boyd, R. W. Nonlinear Optics (Academic Press, 2020).
Smirnova, D., Leykam, D., Chong, Y. D. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).
Google Scholar
Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020). Experimental realization of nonlinear photonic topological insulators.
Google Scholar
Chaunsali, R. & Theocharis, G. Self-induced topological transition in phononic crystals by nonlinearity management. Phys. Rev. B 100, 014302 (2019).
Google Scholar
Darabi, A. & Leamy, M. J. Tunable nonlinear topological insulator for acoustic waves. Phys. Rev. Appl. 12, 044030 (2019).
Google Scholar
Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).
Google Scholar
Mukherjee, S. & Rechtsman, M. C. Observation of Floquet solitons in a topological bandgap. Science 368, 856–859 (2020).
Google Scholar
Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).
Google Scholar
Ivanov, S. K., Kartashov, Y. V., Szameit, A., Torner, L. & Konotop, V. V. Floquet edge multicolor solitons. Laser Photon. Rev. 16, 2100398 (2022).
Google Scholar
Zangeneh-Nejad, F. & Fleury, R. Nonlinear second-order topological insulators. Phys. Rev. Lett. 123, 053902 (2019).
Google Scholar
Kirsch, M. S. et al. Nonlinear second-order photonic topological insulators. Nat. Phys. 17, 995–1000 (2021). Observation of nonlinear second-order photonic topological insulators.
Google Scholar
Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019). Experimental synthesis of non-Abelian gauge fields in real space.
Google Scholar
Chen, Y. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 3125 (2019).
Google Scholar
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Google Scholar
Boross, P., Asbóth, J. K., Széchenyi, G., Oroszlány, L. & Pályi, A. Poor man’s topological quantum gate based on the Su–Schrieffer–Heeger model. Phys. Rev. B 100, 045414 (2019).
Google Scholar
Neef, V. et al. Three-dimensional non-Abelian quantum holonomy. Nat. Phys. 13, 30–34 (2023).
Chen, Z.-G., Zhang, R.-Y., Chan, C. T. & Ma, G. Classical non-Abelian braiding of acoustic modes. Nat. Phys. 18, 179–184 (2022).
Google Scholar
Sun, Y.-K. et al. Non-Abelian Thouless pumping in photonic waveguides. Nat. Phys. 18, 1080–1085 (2022).
Google Scholar
Brosco, V., Pilozzi, L., Fazio, R. & Conti, C. Non-Abelian Thouless pumping in a photonic lattice. Phys. Rev. A 103, 063518 (2021).
Google Scholar
You, O. et al. Observation of non-Abelian Thouless pump. Phys. Rev. Lett. 128, 244302 (2022).
Google Scholar
Fruchart, M., Zhou, Y. & Vitelli, V. Dualities and non-Abelian mechanics. Nature 577, 636–640 (2020).
Google Scholar
Patil, Y. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).
Google Scholar
Zhang, Q. et al. Observation of acoustic non-Hermitian Bloch braids and associated topological phase transitions. Phys. Rev. Lett. 1307, 017201 (2023).
Google Scholar
Tang, W., Ding, K. & Ma, G. Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Natl Sci. Rev. 9, nwac010 (2022).
Google Scholar
Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).
Google Scholar
Wu, Q., Soluyanov, A. A. & Bzdušek, T. Non-Abelian band topology in noninteracting metals. Science 365, 1273–1277 (2019). Theoretical framework of non-Abelian band topology.
Google Scholar
Guo, Q. et al. Experimental observation of non-Abelian topological charges and edge states. Nature 594, 195–200 (2021).
Google Scholar
Ünal, F. N., Bouhon, A. & Slager, R.-J. Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett. 125, 053601 (2020).
Google Scholar
Tiwari, A. & Bzdušek, T. Non-Abelian topology of nodal-line rings in PT-symmetric systems. Phys. Rev. B 101, 195130 (2020).
Google Scholar
Ezawa, M. Topological Euler insulators and their electric circuit realization. Phys. Rev. B 103, 205303 (2021).
Google Scholar
Jiang, B. et al. Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions. Nat. Phys. 17, 1239–1246 (2021).
Google Scholar
Peng, B., Bouhon, A., Monserrat, B. & Slager, R.-J. Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nat. Commun. 13, 423 (2022).
Google Scholar
Bzdušek, T., Wu, Q., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals. Nature 538, 75–78 (2016).
Google Scholar
Wang, M. et al. Experimental observation of non-Abelian earring nodal links in phononic crystals. Phys. Rev. Lett. 128, 246601 (2022).
Google Scholar
Bouhon, A. et al. Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe. Nat. Phys. 16, 1137–1143 (2020).
Google Scholar
Jiang, T. et al. Four-band non-Abelian topological insulator and its experimental realization. Nat. Commun. 12, 6471 (2021).
Google Scholar
Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).
Google Scholar
Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).
Yazyev, O. V. & Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806–809 (2010).
Google Scholar
Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).
Google Scholar
Vozmediano, M. A., Katsnelson, M. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010).
Google Scholar
Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).
Google Scholar
Teo, J. C. Y. & Hughes, T. L. Existence of Majorana-fermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions. Phys. Rev. Lett. 111, 047006 (2013).
Google Scholar
Slager, R.-J., Mesaros, A., Juričić, V. & Zaanen, J. Interplay between electronic topology and crystal symmetry: dislocation-line modes in topological band insulators. Phys. Rev. B 90, 241403 (2014).
Google Scholar
Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys. 5, 298–303 (2009).
Google Scholar
Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).
Google Scholar
Jackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981). Theoretical framework for zero modes bound to a vortex.
Google Scholar
Hou, C.-Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphene-like structures. Phys. Rev. Lett. 98, 186809 (2007).
Google Scholar
Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).
Google Scholar
Gao, P. & Christensen, J. Topological vortices for sound and light. Nat. Nanotechnol. 16, 487–489 (2021).
Google Scholar
Gao, P. et al. Majorana-like zero modes in kekulé distorted sonic lattices. Phys. Rev. Lett. 123, 196601 (2019). Experiment on an acoustic state bound to a topological vortex.
Google Scholar
Gao, P. & Christensen, J. Topological sound pumping of zero-dimensional bound states. Adv. Quantum Technol. 3, 2000065 (2020).
Chen, C.-W. et al. Mechanical analogue of a majorana bound state. Adv. Mater. 31, 1904386 (2019).
Google Scholar
Ma, J., Xi, X., Li, Y. & Sun, X. Nanomechanical topological insulators with an auxiliary orbital degree of freedom. Nat. Nanotechnol. 16, 576–583 (2021).
Google Scholar
Menssen, A. J., Guan, J., Felce, D., Booth, M. J. & Walmsley, I. A. Photonic topological mode bound to a vortex. Phys. Rev. Lett. 125, 117401 (2020).
Google Scholar
Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).
Google Scholar
Noh, J. et al. Braiding photonic topological zero modes. Nat. Phys. 16, 989–993 (2020).
Google Scholar
Sheng, C. et al. Bound vortex light in an emulated topological defect in photonic lattices. Light. Sci. Appl. 11, 243 (2022).
Google Scholar
Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).
Google Scholar
Li, T., Zhu, P., Benalcazar, W. A. & Hughes, T. L. Fractional disclination charge in two-dimensional Cn-symmetric topological crystalline insulators. Phys. Rev. B 101, 115115 (2020).
Google Scholar
Peterson, C. W., Li, T., Jiang, W., Hughes, T. L. & Bahl, G. Trapped fractional charges at bulk defects in topological insulators. Nature 589, 376–380 (2021).
Google Scholar
Liu, Y. et al. Bulk–disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021).
Google Scholar
Deng, Y. et al. Observation of degenerate zero-energy topological states at disclinations in an acoustic lattice. Phys. Rev. Lett. 128, 174301 (2022).
Google Scholar
Wang, Q., Xue, H., Zhang, B. & Chong, Y. D. Observation of protected photonic edge states induced by real-space topological lattice defects. Phys. Rev. Lett. 124, 243602 (2020).
Google Scholar
Xia, B., Zhang, J., Tong, L., Zheng, S. & Man, X. Topologically valley-polarized edge states in elastic phononic plates yielded by lattice defects. Int. J. Solids Struct. 239, 111413 (2022).
Xue, H. et al. Observation of dislocation-induced topological modes in a three-dimensional acoustic topological insulator. Phys. Rev. Lett. 127, 214301 (2021).
Google Scholar
Ye, L. et al. Topological dislocation modes in three-dimensional acoustic topological insulators. Nat. Commun. 13, 508 (2022).
Google Scholar
Lustig, E. et al. Photonic topological insulator induced by a dislocation in three dimensions. Nature 609, 931–935 (2022).
Google Scholar
Zhang, Z. et al. Pseudospin induced topological corner state at intersecting sonic lattices. Phys. Rev. B 101, 220102 (2020).
Google Scholar
Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).
Google Scholar
Ortix, C. Electrons broken into pieces at crystal defects. Nature 589, 356–357 (2021).
Google Scholar
Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).
Google Scholar