Strange India All Strange Things About India and world


  • 1.

    Kametani, H., Sato, A., Sato, Y. & Simpson, A. Neural mechanisms of reflex facilitation and inhibition of gastric motility to stimulation of various skin areas in rats. J. Physiol. 294, 407–418 (1979).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Sato, A. & Schmidt, R. F. The modulation of visceral functions by somatic afferent activity. Jpn. J. Physiol. 37, 1–17 (1987).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Sato, A. Neural mechanisms of autonomic responses elicited by somatic sensory stimulation. Neurosci. Behav. Physiol. 27, 610–621 (1997).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Li, Y. Q., Zhu, B., Rong, P. J., Ben, H. & Li, Y. H. Neural mechanism of acupuncture-modulated gastric motility. World J. Gastroenterol. 13, 709–716 (2007).

    Article 

    Google Scholar 

  • 5.

    Takahashi, T. Effect and mechanism of acupuncture on gastrointestinal diseases. Int. Rev. Neurobiol. 111, 273–294 (2013).

    Article 

    Google Scholar 

  • 6.

    Ma, Q. Somato–autonomic reflexes of acupuncture. Med. Acupunct. 32, 362–366 (2020).

    Article 

    Google Scholar 

  • 7.

    Chavan, S. S., Pavlov, V. A. & Tracey, K. J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46, 927–942 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Ulloa, L., Quiroz-Gonzalez, S. & Torres-Rosas, R. Nerve stimulation: immunomodulation and control of inflammation. Trends Mol. Med. 23, 1103–1120 (2017).

    Article 

    Google Scholar 

  • 9.

    Pan, W. X., Fan, A. Y., Chen, S. & Alemi, S. F. Acupuncture modulates immunity in sepsis: toward a science-based protocol. Auton. Neurosci. 232, 102793 (2021).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Torres-Rosas, R. et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 20, 291–295 (2014).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Liu, S. et al. Somatotopic organization and intensity dependence in driving distinct NPY-expressing sympathetic pathways by electroacupuncture. Neuron 108, 436−435 (2020).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Longhurst, J. C. Defining meridians: a modern basis of understanding. J. Acupunct. Meridian Stud. 3, 67–74 (2010).

    Article 

    Google Scholar 

  • 13.

    Yang, F. C. et al. Genetic control of the segregation of pain-related sensory neurons innervating the cutaneous versus deep tissues. Cell Rep. 5, 1353–1364 (2013).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Choi, S. et al. Parallel ascending spinal pathways for affective touch and pain. Nature 587, 258–263 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Zylka, M. J., Rice, F. L. & Anderson, D. J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 (2005).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Ghitani, N. et al. Specialized mechanosensory nociceptors mediating rapid responses to hair pull. Neuron 95, 944–954.e4 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Kupari, J. et al. Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. Nat. Commun. 12, 1510 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Kucera, J. & Walro, J. M. An immunocytochemical marker for early type I muscle fibers in the developing rat hindlimb. Anat. Embryol. (Berl.) 192, 137–147 (1995).

    CAS 

    Google Scholar 

  • 20.

    Remick, D. G., Newcomb, D. E., Bolgos, G. L. & Call, D. R. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13, 110–116 (2000).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Kleinlogel, S. et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14, 513–518 (2011).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Lima, D. in The Senses: A Comprehensive Reference Vol. 5 (eds Masland, R. H. et al.) 477–526 (Academic, 2008).

  • 23.

    Travagli, R. A. & Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nat. Rev. Gastroenterol. Hepatol. 13, 389–401 (2016).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Damarey, B. et al. Imaging of the nerves of the knee region. Eur. J. Radiol. 82, 27–37 (2013).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Quiroz-Gonzalez, S., Segura-Alegria, B., Guadarrama-Olmos, J. C. & Jimenez-Estrada, I. Cord dorsum potentials evoked by electroacupuncture applied to the hind limbs of rats. J. Acupunct. Meridian Stud. 7, 25–32 (2014).

    Article 

    Google Scholar 

  • 26.

    Peng, Z., Nan, G., Cheng, M. & Zhou, K. The comparison of trigger point acupuncture and traditional acupuncture. World J. Acupunct. Moxibustion 26, 1–6 (2016).

    Article 

    Google Scholar 

  • 27.

    Choi, E. M., Jiang, F. & Longhurst, J. C. Point specificity in acupuncture. Chin. Med. 7, 4 (2012).

    Article 

    Google Scholar 

  • 28.

    Xing, J. J., Zeng, B. Y., Li, J., Zhuang, Y. & Liang, F. R. Acupuncture point specificity. Int. Rev. Neurobiol. 111, 49–65 (2013).

    Article 

    Google Scholar 

  • 29.

    Langevin, H. M. & Wayne, P. M. What is the point? The problem with acupuncture research that no one wants to talk about. J. Altern. Complement. Med. 24, 200–207 (2018).

    Article 

    Google Scholar 

  • 30.

    van der Poll, T., van de Veerdonk, F. L., Scicluna, B. P. & Netea, M. G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 17, 407–420 (2017).

    Article 

    Google Scholar 

  • 31.

    Gerfen, C. R., Paletzki, R. & Heintz, N. GENSAT BAC Cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Bourane, S. et al. Identification of a spinal circuit for light touch and fine motor control. Cell 160, 503–515 (2015).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Liu, Y. et al. VGLUT2-dependent glutamate release from peripheral nociceptors is required to sense pain and suppress itch. Neuron 68, 543–556 (2010).

    CAS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *